Mathematics 554 Homework.

The following is based on Section 3.5, pages 70–72, which you should read.

Theorem 1 (Bolzano-Weierstrass Theorem for Sequences). Every bounded sequence in \mathbb{R} has a convergent subsequence.

Problem 1. Prove this. *Hint:* Put together the following facts to get a proof.

- (a) Every sequence in \mathbb{R} has a monotone subsequence.
- (b) Bounded monotone sequences in \mathbb{R} converge.

Definition 2. A subset, S, of a metric space is **sequentially compact** if and only if every sequence $\langle p_n \rangle_{n=1}^{\infty}$ of points from S has a subsequence that converges to a point of S.

Theorem 3 (Bolzano-Weierstrass Theorem). Every closed bounded subset of a \mathbb{R} is sequentially compact.

Problem 2. Prove this. *Hint:* You should be able to get a proof of this by putting together the follow results we have already proven.

- (a) Every sequence of real numbers has a monotone subsequence.
- (b) Bounded monotone sequences are convergent.
- (c) If a set is closed, it contains the limits of all its convergent subsequence.

Lemma 4. Let $\langle p_n \rangle_{n=1}^{\infty} = \langle (x_n, y_n) \rangle_{n=1}^{\infty}$ be a sequence in \mathbb{R}^2 . Then $\langle p_n \rangle_{n=1}^{\infty}$ if and only if both the sequences

$$\langle x_n \rangle_{n=1}^{\infty}, \qquad \langle y_n \rangle_{n=1}^{\infty}$$

converge.

Proof. We have done a version of this in class, and it is also proven on pages 70-71 of the notes. \Box

Lemma 5. Let $\langle p_n \rangle_{n=1}^{\infty}$ be a convergent sequence in a metric space. Say $\lim_{n \to \infty} p_n = p$. Let $\langle p_n \rangle_{k=1}^{\infty}$ be a subsequence. Then also

$$\lim_{k \to \infty} p_{n_k} = p.$$

Problem 3. Prove this. Hint: Let $\varepsilon > 0$. As $\lim_{n \to \infty} p_n = p$ there is a N such that

$$n \geq N$$
 implies $d(p_n, p) < \varepsilon$.

But $n_k \geq k$ and therefore if $k \geq N$ we have $n_k \geq N$. It should now be easy.

Theorem 6. Every closed bounded subset of \mathbb{R}^n is sequentially compact.

Problem 4. Prove this for n = 2. Hint: Let S be a closed bounded subset of \mathbb{R}^n and let $\langle p_n \rangle_{n=1}^{\infty} = \langle (x_n, y_n) \rangle_{n=1}^{\infty}$ be a sequence of points from S. Then show the following

- (a) The sequences $\langle x_n \rangle_{n=1}^{\infty}$ and $\langle y_n \rangle_{n=1}^{\infty}$ are both bounded in \mathbb{R} . (b) The sequence $\langle x_n \rangle_{n=1}^{\infty}$ has a convergent subsequence $\langle s_{n_k} \rangle_{n=1}^{\infty}$, say $\lim_{k \to \infty} x_{n_k} = 1$
- (c) The sequence $\langle y_{n_k} \rangle_{k=1}^{\infty}$ has a convergent subsequence $\langle y_{n_{k_j}} \rangle_{j=1}^{\infty}$. (d) The subsequence $\langle p_{n_{k_j}} \rangle_{j=1}^{\infty}$, say $\lim_{j \to \infty} p_{n_{k_j}} = b$. of $\langle p_n \rangle_{n=1}^{\infty}$ converges:

$$\lim_{j \to \infty} p_{n_{k_j}} = (a, b).$$

(e) As S is closed, it contains the limits of all its convergent subsequence. Explain why this implies $(a, b) \in S$.

(f) Explain why we are done.