Mathematics 554 Homework.

You will have a quiz on Monday where have to know the definitions of the following:

- The union, $\bigcup \mathcal{U}$, and intersection, $\bigcup \mathcal{U}$, of a collection, \mathcal{U} of a set E.
- \mathcal{U} is a open cover of A.
- A is a **compact** compact subset of a metric space (E, d).

See pages 72–73 and 74–75 for these definitions.

Here is the definition for compact.

Definition 1. Let A be a subset of the metric space E. Then A is compact if and only if every open cover of A has a finite subcover.

More explicitly this means that if \mathcal{U} is an open cover of A, then then there is a finite set $\mathcal{U}_0 = \{U_1, U_2, \dots, U_m\}$ of \mathcal{U} such that

$$A \subseteq U_1 \cup U_2 \cup \cdots \cup U_n.$$

Problem 1. Let E be a metric space and $p \in E$. Let $r_1, r_2, \ldots, r_m > 0$. Then show

$$B(p, r_1) \cup B(p, r_2) \cup \cdots \cup B(p, r_m) = B(p, r_{\text{max}})$$

$$B(p, r_1) \cap B(p, r_2) \cap \cdots \cap B(p, r_m) = B(p, r_{\text{min}})$$

where

$$r_{\min} = \min(r_1, r_2, \dots, r_m)$$
 and $r_{\max} = \max(r_1, r_2, \dots, r_m)$.

Hint: We have done this before, this is just to refresh our memories as we will be using these facts. \Box

Proposition 2. Let E be a metric space and $p \in E$. Let $A \subseteq E$ be compact. Then A is bounded, that is there is r > 0 such that $A \subseteq B(p, r)$.

Problem 2. Prove this. *Hint:* Let

$$\mathcal{U} = \{B(p,r) : r > 0\}.$$

Show this is an open cover (again something we have done before). Explain why there is a finite set $\mathcal{U}_0 = \{B(p, r_1), B(p, r_2), \dots, B(p, r_m)\}$ that covers A. Then, by the definition of a cover,

$$A \subseteq B(p, r_1) \cup B(p, r_2) \cup \cdots \cup B(p, r_m).$$

Now use Problem 1. \Box

Proposition 3. Let A be a compact subset of a metric space E. Then A is closed in E.

Problem 3. Prove this. *Hint:* Assume A is compact. To show A is closed it is enough to show that A contains all its adherent points. Towards a

contradiction assume A has an adherent point a with $a \notin A$. For each r > 0, let

$$U_r = \{x \in E : d(a, x) > r\} = E \setminus \overline{B}(a, r).$$

This is open (we have done this before and you can assume it here). Use that $a \notin A$ to show

$$\mathcal{U} = \{U_r : r > 0\}$$

is a open over of A. (If $p \in A$ then $p \neq a$ so d(a, p) > 0. Choose r < d(a, p) and then $p \in U_r$). Then use compactness to get

$$\mathcal{U}_0 = \{U_{r_1}, U_{r_2}, \dots, U_{r_m}\}$$

that covers A. Show

$$A \subseteq U_{r_1} \cup U_{r_2} \cup \cdots \cup U_{r_m} = U_{r_{\min}}$$

and that this contradicts that a is an adherent point of A.

We have proven:

Theorem 4. A subset $A \subseteq \mathbb{R}^n$ of \mathbb{R}^n is sequentially compact if and only if if closed and bounded in \mathbb{R}^n .

Problem 4. Show that a compact subset of \mathbb{R}^n is sequentially compact. *Hint:* In light of the theorem just quoted, it is enough to show A is closed and bounded.

The converse of this is true, but we are, at least for the present, going to skip the proof. But the following is true and important.

Theorem 5. Let A be a subset of \mathbb{R}^n . Then the following are equivalent:

- (a) A is closed and bounded.
- (b) A is compact.
- (c) A is sequentially compact.

Recall

Definition 6. A function $f: E \to E'$ between metric spaces is continuous at $p \in E$ if and only if for all $\varepsilon > 0$ there is a $\delta > 0$ such that

$$d(x, p) < \delta$$
 implies $d'(f(x), f(p)) < \varepsilon$.

We also have the definition

Definition 7. If $f: E \to E'$ is a map between metric space, then for $p \in E$ and $q \in E'$

$$\lim_{x \to p} f(x) = q$$

if and only if for all $\varepsilon > 0$, there is a $\delta > 0$ so that

$$0 < d(x, p) < \delta$$
 implies $d'(f(x), q) < \varepsilon$.

Theorem 8. Let $f: E \to E'$ be a map between metric spaces and $p \in E$. Then f is continuous at p if and only if $\lim_{x\to p} f(x) = f(p)$.

Problem 5. Prove this. *Hint:* It is mostly just a definition chase. Do not make it hard. \Box