Mathematics 554 Homework.

Definition 1. Let $\langle p_n \rangle_{n=1}^{\infty}$ be a sequence in a metric space E. Then the sequence is bounded if and only if there is a point $p \in E$ and a real number R > 0 such that $d(p, p_n) \leq R$ for all n.

Problem 1. Prove that a convergent sequence in a metric space is bounded. Hint: Let $\langle p_n \rangle_{n=1}^{\infty}$ be convergent, say $\lim_{n \to \infty} p_n = p$. Let $\varepsilon = 1$ in the definition of convergence to get a N such that

$$n \leq N$$
 implies $d(p, p_n) < 1$.

Now prove if

$$R = \max\{1, d(p, p_1), d(p, p_2), \cdots, d(p, p_N)\}\$$

then $d(p, p_n) \leq R$ for all n.

We have done the next problem in class, but it is worth repeating.

Problem 2. Let $f: E \to E'$ be a Lipschitz map between metric spaces. Let $\langle p_n \rangle_{n=1}^{\infty}$ be a convergent sequence in E, say $\lim_{n\to\infty} p_n = p$. Then

$$\lim_{n \to \infty} f(p_n) = f(p)$$

in E'. Hint: By the definition of Lipschitz there is M > 0 such that

$$d'(f(x), f(y)) \le Md(x, y)$$

for all $x, y \in E$. In particular this implies

$$d'(f(p_n), f(p)) \le Md(p_n, p).$$

You should be able to use this and the definition of $p_n \to p$ to find a N so that $n \ge N \implies d'(f(p_n), f(p)) < \varepsilon$.

Theorem 2. Let E be a metric space and $A \subseteq E$ a closed subset of E. Let $\langle a_n \rangle_{n=1}^{\infty}$ be a sequence with $a_n \in A$ for all n. Assume $\lim_{n \to \infty} a_n = p$. Then $p \in A$.

A nice restatement is that a closed set contains the limits of all its convergent sequences.

Problem 3. Prove the theorem. *Hint:* Towards a contradiction assume that $p \notin A$. Then $p \in \mathcal{C}(A)$ (the complement of A in E) is open. Thus there is a r > 0 such that $B(p,r) \subseteq \mathcal{C}(A)$. That is $B(p,r) \cap A = \emptyset$. Letting $\varepsilon = r$ in the definition of $p_a \to p$ give a N such that $n \geq N \implies d(a_n,p) < r$. Show this leads to a contradiction.

Definition 3. Let A be a metric space and $A \subseteq E$ a subset of E. Then $p \in E$ is an **adherent point** of A if and only if for all r > 0 we have $B(p,r) \cap A \neq \emptyset$.

Here is an equivalent definition which may be easier to use.

Definition	4. Let A be a metric space and $A \subseteq E$ a subset of E.	Then
$p \in E$ is an	adherent point of A if and only if for all $r > 0$ there is	$a \in A$
with $d(p, a)$	< r.	

Proposition 5. If p is an adherent point of A, then there is a sequence $(a_n)_{n=1}^{\infty}$ with $a_n \in A$ for all n and $\lim_{n\to\infty} a_n = p$.

Problem 4. Prove this. *Hint:* Let n be a positive integer. Explain why the definition of adherent point implies there is an $a_n \in A$ such that $d(a_n, p) < 1/n$. Then show $\lim_{n\to\infty} a_n = p$.