Session 2 Problems: Calculus

Notation:

- \mathbb{R} is the set of real numbers i.e. the number line.
- $\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}$ is the set of complex numbers.

Tools that may be useful:

- Intermediate Value Theorem:

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose that $f(a)=c<f(b)=d$. Then for all $y \in[c, d]$, there exists $x \in[a, b]$ such that $f(x)=y$.

- Mean Value Theorem:

For a differentiable function $f:[a, b] \rightarrow \mathbb{R}$ there exists an $x \in(a, b)$ so that $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$.

Problems:

1. Let $f:[a, b] \rightarrow[a, b]$ be a continuous function. Show that f has a fixed point; i.e. show that there is a $c \in[a, b]$ with $f(c)=c$.
2. Show that not all the zeros of the polynomial $P(x)=x^{4}-\sqrt{7} x^{3}+4 x^{2}-\sqrt{22} x+15$ are real.
3. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

$$
|f(x)-f(y)| \leq|x-y|^{2}
$$

for all $x, y \in \mathbb{R}$.
4. Compute

$$
S=\int \frac{\sin (x)}{\sin (x)+\cos (x)} d x
$$

5. Compute

$$
\int_{0}^{\pi / 2} \ln (\sin x) d x
$$

6. Determine

$$
\max _{z \in \mathbb{C},|z|=1}\left|z^{3}-z+2\right|
$$

