SESSION 3 PROBLEMS: SEQUENCES AND SERIES

(a) Determine if the series

$$
\sum_{n=0}^{\infty} \frac{n^{n}}{2^{n^{2}}}
$$

converges or diverges.
(b) Suppose $k=2024 / 745$. Determine if the series

$$
\sum_{n=1}^{\infty} \frac{n!k^{n}}{(n+1)^{n}}
$$

converges or diverges.
(c) Determine if the series

$$
\sum_{n=3}^{\infty} \frac{1}{n \log (n) \log \log (n)}
$$

converges or diverges. (log denotes the natural logarithm)
(d) Suppose a_{n} is a convergent sequence, and that $a_{n} \rightarrow \ell$. Prove that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} a_{n}=\ell
$$

(e) Suppose that the sequence a_{n} is monotone and that

$$
\sum_{n=1}^{\infty} a_{n}
$$

converges. Show that

$$
\sum_{n=1}^{\infty} n\left(a_{n}-a_{n+1}\right)
$$

converges.
(f) Let a_{n} be a sequence of positive reals numbers that satisfy $a_{n} \leqslant a_{2 n}+a_{2 n+1}$ for all $n \in \mathbb{N}$. Prove that

$$
\sum_{n=1}^{\infty} a_{n}
$$

diverges.
(g) Let a_{n} be a sequence of real numbers satisfying $a_{n}=\sum_{k=n+1}^{\infty} a_{k}^{2}$ for all $n \in \mathbb{N}$. Show that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $a_{n}=0$ for all $n \in \mathbb{N}$.
(h) Prove that there exists some constant $C \in \mathbb{R}$ such that $\left|\sum_{n=1}^{N} \cos (n)\right|<C$ and $\left|\sum_{n=1}^{N} \sin (n)\right|<$ C for all $N \in \mathbb{N}$.

