SESSION 4 PROBLEMS: LINEAR ALGEBRA

Tools:
(a) Let A, B, C, D be 4 points in the plane that form a quadrilateral. Prove that the midpoints of $A B, B C, C D$ and $D A$ form a parallelogram.
(b) Let A, B, C, D be 4 points in the plane. Prove that $|A B||C D|+|B C||A D| \geqslant|A C||B D|$.
(c) Does there exist $n \times n$ matrices A, B with $A B-B A=I_{n}$.
(d) Let F_{n} be the nth Fibonacci number. Use the matrix $M=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ to show that

$$
F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}
$$

(e) For arbitrary value $x_{1}, x_{2}, \ldots, x_{n}$ find the determinant of

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1}
\end{array}\right]
$$

(f) Let A be an $n \times n$ symmetric invertible matrix with positive real entries, $n \geqslant 2$. Show that A^{-1} has at most $n^{2}-2 n$ entries equal to zero.
(g) For which positive integers n is there an $n \times n$ matrix with integer entries such that every dot product of a row with itself is even, while every dot product of two different rows is odd?

