SESSION 4 PROBLEMS: LINEAR ALGEBRA

Tools:

- (a) Let A, B, C, D be 4 points in the plane that form a quadrilateral. Prove that the midpoints of AB, BC, CD and DA form a parallelogram.
- (b) Let A, B, C, D be 4 points in the plane. Prove that $|AB||CD| + |BC||AD| \ge |AC||BD|$.
- (c) Does there exist $n \times n$ matrices A, B with $AB BA = I_n$.

(d) Let F_n be the *n*th Fibonacci number. Use the matrix $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ to show that $F_{n+1}F_{n-1} - F_n^2 = (-1)^n$.

(e) For arbitrary value x_1, x_2, \ldots, x_n find the determinant of

[1	1	• • •	1]
x_1	x_2	•••	x_n
:	:	۰.	:
x_1^{n-1}	x_2^{n-1}	•••	x_n^{n-1}

- (f) Let A be an $n \times n$ symmetric invertible matrix with positive real entries, $n \ge 2$. Show that A^{-1} has at most $n^2 2n$ entries equal to zero.
- (g) For which positive integers n is there an $n \times n$ matrix with integer entries such that every dot product of a row with itself is even, while every dot product of two different rows is odd?