Homework assigned Wednesday, February 22.

We saw in class today that the following holds.

Theorem 1. Let U be an open set in \mathbb{C} and γ a path contained in U. Let f(z) be a function defined on U that has an antiderivative F(z). (That is F(z) is analytic in U and F'(z) = f(z).) Then

$$\int_{\gamma} f(z) dz = F(\gamma_{\text{end}}) - F(\gamma_{\text{begin}}).$$

Problem 1. Use this to evaluate the following integrals.

- (a) $\int_{\gamma} 12z^3 dz$ where γ is parametrized by $z(t) = (1 + 5t t^3) + i(6 t^4 + 3t^6)$; $0 \le t \le 1$.
- (b) $\int_{\alpha} ze^{z^2} dz$ where α is the segment going from 1+i to -i.
- (c) $\int_{\beta} \frac{dz}{z^2}$ where β is the upper half of the circle |z| = 1.

Definition 2. A path is *closed* iff it begins and ends at the same point. (It is allowed to cross itself.) See Figure 1 for examples of closed paths and Figure 2 for examples of non-closed paths.

Remark 3. Another way to say that a curve is closed is that $\gamma_{\text{end}} = \gamma_{\text{begin}}$.

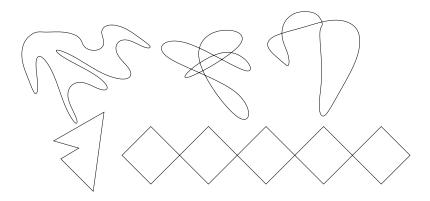


Figure 1. Examples of closed curves.

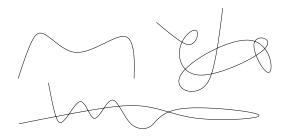


Figure 2. Examples of non-closed curves.

Theorem 4. Let U be an open set, f a function that has an antiderivative, F, in U and γ a closed curve in U. Then

$$\int_{\gamma} f(z) \, dz = 0.$$

Problem 2. Prove this. *Hint:* It is not hard.

Note the last theorem tells use that if a function has an antiderivative, then its integral over every closed curve is zero. The contrapositive to this is

Corollary 5. If there is a closed curve, γ , such that

$$\int_{\gamma} f(z) \, dz \neq 0$$

then f(z) does not have an antiderivative in any open set containing γ .

Problem 3. Show that $f(z) = \overline{z}$ does not have an antiderivative. *Hint:* Compute $\int_{\gamma} f(z) dz$ where γ is the unit circle |z| = 1 traversed once in the counter-clock wise direction.

Problem 4. Show that $f(z) = \frac{1}{z}$ does not have an antidarivative in the set $U = \{z : z \neq 0\}$. Hint: Compute $\int_{\gamma} f(z) dz$ where γ is the unit circle |z| = 1 traversed once in the counterclock wise direction.

Problem 5. In the last problem we have seen that $f(z) = \frac{1}{z}$ does not have an antiderivative, but we learned a couple of weeks ago that if $F(z) = \log(z)$ that $F'(z) = \frac{1}{z} = f(z)$ which makes it look like f(z) does have an antiderivative. Resolve this paradox.