Homework assigned Wednesday, January 25.

Problem 1. Find the set where the following series converge and draw a picture of it.

(a)
$$\sum_{n=1}^{\infty} \frac{z^n}{n}.$$

(b) The series
$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$
.

(c)
$$\sum_{n=0}^{\infty} \frac{z^2}{3^n(n^2+1)}$$
.

Problem 2. We are now using for our official definitions of $\cos(z)$ and $\sin(z)$

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}.$$

We also know that the exponential satisfies the basic identity

$$e^{z+w} = e^z e^w.$$

This identity and the definitions above let us prove about all the basic trigonometric identities in a straightforward manner. For example use the definition to do the following

- (a) Simplify $\cos^2(z) + \sin^2(z)$ (as in the case of z being real, the answer is 1, but you need to show that it also holds for complex z.)
- (b) Simplify $\cos(z)\cos(w) \sin(z)\sin(w)$.

Problem 3. Show that if y is a real number, show that $\cos(iy)$ is a positive real number.

Problem 4. If z = x + iy then

$$e^z = e^{x+iy} = e^x e^i y$$

and thus if $re^{i\theta}$ is the polar form of e^z , then $r=e^x$ and $\theta=y+2n\pi$ for some integer n. Use this to find all solutions to the following

- (a) $e^z = 1$.
- (b) $e^z = -1$.
- (c) $e^z = 1 i$.

Recall that for a real number t that cosh(t) and sinh(t) are defined by

$$cosh(t) = \frac{e^t + e^{-t}}{2}, \qquad sinh(t) = \frac{e^t - e^{-t}}{2}$$

Let z = x + iy. Then we have

$$\begin{split} \cos(z) &= \frac{e^{iz} + e^{-iz}}{2} \\ &= \frac{e^{-y + ix} + e^{y - ix}}{2} \\ &= \frac{e^{-y}e^{ix}}{2} + \frac{e^{y}e^{-ix}}{2} \\ &= \frac{e^{-y}\left(\cos(x) + i\sin(x)\right)}{2} + \frac{e^{y}\left(\cos(x) - i\sin(x)\right)}{2} \\ &= \cos(x)\left(\frac{e^{-y} + e^{y}}{2}\right) + i\sin(x)\left(\frac{e^{-y} - e^{y}}{2}\right) \\ &= \cos(x)\cosh(y) - i\sin(x)\sinh(y). \end{split}$$

Therefore the real part of $\cos(z)$ is $\cos(x)\cosh(y)$ and the imaginary part is $-\sin(x)\sinh(y)$.

Problem 5. Do a similar calculation to find the real and imaginary parts of $\sin(z)$.