Riemann Integration.

Recall that we are using the notation S[a, b] the vector space of all step functions on [a, b] and $\mathcal{R}[a, b]$ for the vector space of Riemann integrable functions on the [a, b].

Proposition 1. If f is a bounded function on the closed bounded interval [a,b] then f is integrable if and only if all $\varepsilon > 0$ there are step functions $\varphi, \psi \in \mathcal{S}[a,b]$ such that

$$\varphi \leq f \leq \psi$$

and

$$\int_{a}^{b} (\psi - \varphi) \, dx < \varepsilon.$$

Problem 1. Prove this. *Hint:* We outlined the proof in class.

To use this we need to be able to construct some step functions that approximate a given bounded function well. Here we need a little bit more notation.

Definition 2. Let [a,b] be a closed bounded interval. Then a **partition** of [a,b] is a list of points $a=x_0 < x_1 < x_2 < \cdots < x_n = b$. We denote it by $\mathcal{P} = \{x_0, x_1, \ldots, x_n\}$. We also use the notation

$$\Delta x_i = x_i - x_{i-1}.$$

(See Figure 1.)

 $a = \begin{matrix} x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 = b \\ \text{Figure 1. A partition of the interval } [a,b] \text{ into } n = 6 \text{ pieces.} \\ \text{The } j\text{-th interval } [x_{j-1},x_j] \text{ has length } \Delta x_j = x_j - x_{j-1}. \end{matrix}$

If f is a monotone increasing function on [a, b] and $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ is a partition of [a, b] define two step functions by $\varphi_{f, \mathcal{P}}(b) = f(b)$,

$$\varphi_{f,\mathcal{P}}(x) = f(x_{j-1}) \quad \text{for} \quad x \in [x_{j-1}, x_j)$$

and $\psi_{f,\mathcal{P}}(b) = f(b)$

$$\psi_{f,\mathcal{P}} = f(x_j)$$
 for $x \in [x_{j-1}, x_j)$.

See Figure 2

Proposition 3. If f is monotone increasing on [a,b] then for any partition, \mathcal{P} , of [a,b], with the notation above,

$$\varphi_{f,\mathcal{P}} \leq f \leq \psi_{f,\mathcal{P}}$$

on [a,b].

Problem 2. Prove this.

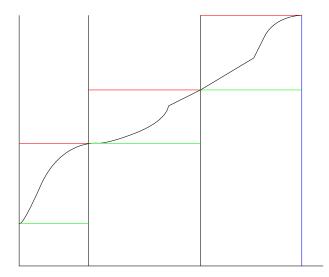


FIGURE 2. A monotone increasing function on [a, b] and a partition, \mathcal{P} , with n = 3 showing the lower step function $\varphi_{f,\mathcal{P}}$ (in green) and the upper step function $\psi_{f,\mathcal{P}}$ (in red).

Definition 4. Given a positive integer n and a closed bounded interval [a, b] the **uniform partition** of [a, b] into n sub-intervals is the partition $\mathcal{P} = \{x_0, x_1, \ldots, x_n\}$ with

$$x_j = a + j\left(\frac{b-a}{n}\right)$$

for j = 0, 1, ..., n. Note in this case all the lengths, Δx_j of the sub-intervals $[x_{j-1}, x_j]$ have the same value $\Delta x = \Delta x_j = (b-a)/n$.

Now let us consider the monotone increasing function f on the interval [a,b] with the uniform partition, \mathcal{P} , of [a,b] with n=4. Then $\Delta x = \Delta x_j = (b-a)/4$ and $\varphi_{f,\mathcal{P}} \leq f \leq \psi_{f,\mathcal{P}}$. Also

$$\int_{a}^{b} \varphi_{f,\mathcal{P}}(x) \, dx = \left(f(x_0) + f(x_1) + f(x_2) + f(x_3) \right) \Delta x$$

and

$$\int_{a}^{b} \psi_{f,\mathcal{P}}(x) \, dx = \left(f(x_1) + f(x_2) + f(x_3) + f(x_4) \right) \Delta x.$$

Thus

$$\int_{a}^{b} (\psi_{f,\mathcal{P}}(x) - \psi_{f,\mathcal{P}}(x)) \ dx = (f(x_4) - f(x_0)) \Delta x = (f(b) - f(a)) \Delta x$$

There is nothing special about n = 4 in this:

Problem 3. Show that if f is monotone increasing on [a,b], n is a positive integer and $\mathcal{P} = \{x_0, x_1, \ldots, x_n\}$ is the uniform partition of [a,b] into n

sub-intervals, then, with the notation above,

$$\int_a^b (\psi_{f,\mathcal{P}}(x) - \varphi_{f,\mathcal{P}}(x)) \ dx = (f(b) - f(a)) \Delta x = \frac{(f(b) - f(a))(b - a)}{n}. \ \Box$$

Theorem 5. If f is a monotone function on the closed bounded interval [a,b], then f is integrable on [a,b].

Problem 4. Prove this. *Hint*: With out loss of generality assume f is monotone increasing (if f is monotone decreasing replace f by -f). Let $\varepsilon > 0$ and let n be a positive integer such that

$$\frac{(f(b) - f(a))(b - a)}{n} < \varepsilon$$

and use Proposition 1 and the last problem.

Theorem 6. Let f be a continuous function on [a, b]. Then f is integrable on [a, b].

Proof. Let $\varepsilon > 0$. As f is continuous on the closed bounded set [a,b] it is uniformly continuous on [a,b]. Thus there is an $\delta > 0$ such that for $x,y \in [a,b]$.

$$|x-y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{b-a}.$$

Let n be a positive integer such that

$$\frac{b-a}{n} = \Delta x < \delta$$

and let $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ be the uniform partition of [a, b] into n sub-intervals. Set

$$m_j = \inf\{f(x) : x \in [x_{j-1}, x_j]\} = \min\{f(x) : x \in [x_{j-1}, x_j]\},\$$

 $M_j = \sup\{f(x) : x \in [x_{j-1}, x_j]\} = \max\{f(x) : x \in [x_{j-1}, x_j]\}$

where the infimum is achieved as a minimum and the supremum is achieved as a maximum because continuous functions on closed bounded sets achieve their maximums and minimums. Define step functions φ and ψ on [a,b] $\varphi(b) = \psi(b) = f(b)$ and

$$\varphi(x) = m_j$$
 for $x_{j-1} \le x < x_j$
 $\psi(x) = M_j$ for $x_{j-1} \le x < x_j$.

Then

$$\varphi \leq f \leq \psi$$

and

$$\int_{a}^{b} (\varphi(x) - \psi(x)) dx = \sum_{j=1}^{n} (M_j - m_j) \left(\frac{b-a}{n}\right).$$

As f is continuous on the closed bounded interval $[x_{j-1}, x_j]$, f achieves its maximum and minimum on this interval. Thus there are $\alpha_j, \beta_j \in [x_{j-1}, x_j]$

with $f(\alpha_j) = m_j$ and $f(\beta_j) = M_j$. But then $|\alpha_j - \beta_j| \leq \Delta x < \delta$ and therefore

$$M_j - m_j = |f(\beta_j) - f(\alpha_j)| < \frac{\varepsilon}{b - a}.$$

Thus

$$\int_{a}^{b} (\varphi(x) - \psi(x)) dx = \sum_{j=1}^{n} (M_j - m_j) \left(\frac{b-a}{n}\right) < \sum_{j=1}^{n} \frac{\varepsilon}{b-a} \left(\frac{b-a}{n}\right) = \varepsilon$$

and the result now follows from Proposition 1.

Let us record a few more basic facts about integrable functions.

Proposition 7. If $f \in \mathcal{R}[a,b]$ then so is $g = \max\{f,0\}$.

Proof. Let $\varepsilon > 0$ Let φ and ψ be step functions on [a, b] such that $\varphi \leq f \leq \psi$ and $\int_a^b (\psi - \varphi) dx < \varepsilon$. Then

$$\varphi_0 = \max\{0, \varphi\}, \qquad \psi_0 = \max\{0, \psi\}$$

are step functions, $\varphi_0 \leq \max\{f,0\} \leq \psi_0$ and $0 \leq \psi_0 - \varphi_0 \leq \psi - \varphi$. Thus

$$\int_{a}^{b} (\psi_{0} - \varphi_{0}) dx \le \int_{a}^{b} (\psi - \varphi) dx < \varepsilon$$

and so $\max\{f,0\}$ is integrable by Proposition 1.

This implies a good deal more because of the following elementary result.

Lemma 8. For real numbers a, b the following hold

$$\begin{aligned} \min\{a,0\} &= -\max\{-a,0\}, \\ |a| &= \max\{a,0\} + \max\{-a,0\}, \\ \max\{a,b\} &= a + \max\{0,b-a\}, \\ \min\{a,b\} &= a + \min\{0,b-a\}. \end{aligned}$$

Proof. Left to reader (and you don't have to turn these in). We did enough of this type of thing last term that I believe you can do it. \Box

Proposition 9. If f and g are integrable on [a,b] then so are |f|, $\min\{f,g\}$ and $\max\{f,g\}$.

Proof. This follows easily from Proposition 7 and Lemma 8. \Box

Lemma 10. If f is integrable on [a,b] then so is f^2 .

Problem 5. Prove this. *Hint*: As $f^2 = |f|^2$ and |f| is also integrable by replacing f by |f| we can assume $f \geq 0$. As f is integrable it is bounded, say $0 \leq f \leq B$ on [a,b]. Also as f is integrable on [a,b] for $\varepsilon > 0$ there is are step functions φ, ψ such that

$$\varphi < f < \psi$$

and

$$\int_{a}^{b} (\psi - \varphi) \, dx < \frac{\varepsilon}{2B}.$$

By replacing φ by $\max\{0, \varphi\}$ and ψ by $\min\{\psi, B\}$ we can assume $0 \le \varphi$ and $\psi \le B$. Then φ^2 and ψ^2 are step functions and

$$\varphi^2 \le f^2 \le \psi^2$$

and

$$0 \le \psi^2 - \varphi^2 = (\psi + \varphi)(\psi - \varphi) \le (\psi + \psi)(\psi - \varphi) \le (B + B)(\psi - \varphi).$$

You should now be able to show

$$\int_{a}^{b} (\psi^{2} - \varphi^{2}) \, dx < \varepsilon$$

so that Proposition 1 applies.

Proposition 11. If f and g are integrable on [a,b] then so is the product fg.

Problem 6. Prove this. *Hint:* Show

$$fg = \frac{(f+g)^2 - (f-g)^2}{4}$$

and use Lemma 10.

Proposition 12. If a < b < c and f is integrable on [a, c] then the restrictions $f|_{[a,b]}$ and $f|_{[b,c]}$ are integrable on [a,b] and [b,c] respectively and

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx.$$

Proof. We have shown for any bounded function on [a, c] that

$$\overline{\int}_{a}^{c} f(x) dx = \overline{\int}_{a}^{b} f(x) dx + \overline{\int}_{b}^{c} f(x) dx,$$

$$\underline{\int}_{a}^{c} f(x) dx = \underline{\int}_{a}^{b} f(x) dx + \underline{\int}_{b}^{c} f(x) dx.$$

As f is integrable on [a, c]

$$\int_{a}^{c} f(x) dx = \overline{\int}_{a}^{c} f(x) dx$$

$$= \underline{\int}_{a}^{c} f(x) dx$$

$$= \underline{\int}_{a}^{b} f(x) dx + \underline{\int}_{b}^{c} f(x) dx$$

$$\leq \overline{\int}_{a}^{b} f(x) dx + \overline{\int}_{b}^{c} f(x) dx$$

$$= \overline{\int}_{a}^{c} f(x) dx$$

$$= \int_{a}^{c} f(x) dx.$$

Thus equality must hold at all the intermediate inequalities. Therefore

$$\underline{\int_{a}^{b} f(x) dx} = \overline{\int_{a}^{b} f(x) dx} \quad \text{and} \quad \underline{\int_{b}^{c} f(x) dx} = \overline{\int_{b}^{c} f(x) dx}$$

which implies the restrictions $f|_{[a,b]}$ and $f|_{[b,c]}$ are integrable. The rest follows from

$$\int_{a}^{b} f(x) dx = \overline{\int}_{a}^{b} f(x) dx \quad \text{and} \quad \int_{b}^{c} f(x) dx = \overline{\int}_{b}^{c} f(x) dx$$

and that equality holds in the displayed inequality.

Proposition 13. Let f be integrable on [a,b] and let $[\alpha,\beta] \subseteq [a,b]$. The f is integrable on $[\alpha,\beta]$.

Problem 7. Prove this. *Hint*: $[\alpha, \beta] = [a, \beta] \cap [\alpha, b]$ and Proposition 12. \square

It is useful to define $\int_a^b f(x) dx$ even in the cases where a = b and b < a.

Definition 14. For any function f define

$$\int_{a}^{b} f(x) \, dx = 0.$$

If b < a and f is integrable on [b, a] define

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx.$$

Proposition 15. If f is integrable on the interval $[x_1, x_2]$ and $a, b, c \in [x_1, x_2]$ then, with the definitions above,

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx.$$

Proof. This is just checking case by case (i.e. $a \le b \le c$, $a \le c \le b$ etc.) and is left to the reader. And please do not hand it in.

Proposition 16. Let f(x) be integrable on [a,b] and let $F:[a,b] \to \mathbf{R}$ be defined by

$$F(x) = \int_{a}^{x} f(t) dt$$

then there is a constant M such that

$$|F(x_2) - F(x_1)| \le M|x_2 - x_1|$$

and therefore F is continuous on [a, b].

Problem 8. Prove this. *Hint:* As f is integrable on [a, b], it is bounded on [a, b], say $|f(x)| \leq M$ on [a, b]. Without loss of generality we can assume that $x_1 \leq x_2$. Then

$$|F(x_2) - F(x_1)| = \left| \int_a^{x_2} f(t) dt - \int_a^{x_1} f(t) dt \right| = \left| \int_{x_1}^{x_2} f(t) dt \right| \le \int_{x_1}^{x_2} |f(t)| dt$$
 and it should be easy from here. \square

Theorem 17 (Fundamental Theorem of Calculus Form 1). Let f be integrable on [a,b]. Define new function $F:[a,b] \to \mathbf{R}$ by

$$F(x) = \int_{a}^{x} f(t) dt.$$

If f is continuous at the point $x \in (a,b)$, then the derivative of F exists at x and

$$F'(x) = f(x).$$

Problem 9. Prove this. Hint: First note

$$1 = \frac{1}{h} \int_{x}^{x+h} 1 \, dt.$$

Multiply by f(x) to get

$$f(x) = \frac{1}{h} \int_{x}^{x+h} f(x) dt$$

Also note

$$F(x+h) - F(x) = \int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt = \int_{x}^{x+h} f(t) dt.$$

Combining some of these formulas we get

$$\frac{F(x+h) - F(x)}{h} - f(x) = \frac{1}{h} \int_{x}^{x+h} f(t) dt - \frac{1}{h} \int_{x}^{x+h} f(x) dt$$
$$= \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x)) dt.$$

Let $\varepsilon > 0$. As f is continuous at x there is a $\delta > 0$ such that

$$|t - x| < \delta \implies |f(t) - f(x)| < \varepsilon.$$

Put this all together to show

$$|h| < \delta \implies \left| \frac{F(x+h) - F(x)}{h} - f(x) \right| < \varepsilon$$

and explain why this shows F'(x) = f(x).

Theorem 18 (Fundamental Theorem of Calculus Form 2). Let f be continuous on [a,b] and let F be continuous on [a,b] and differentiable (a,b) with F'=f on (a,b). Then

$$\int_{a}^{b} f(t) dt = F(b) - F(a) = F \bigg|_{a}^{b}.$$

Problem 10. Prove this. *Hint:* Let

$$G(x) = \int_{a}^{x} f(t) dt - F(x)$$

and show G'(x) = 0 for $x \in (a, b)$.

Corollary 19. If f is continuous on [a,b] and F is any anti-derivative of f on [a,b] (that is F'(x) = f(x) for $x \in [a,b]$), then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Problem 11. Prove this.

Definition 20. Let f be integrable on [a, b]. Then the **average value** of f on [a, b] is

$$\frac{1}{b-a} \int_a^b f(x) \, dx.$$

Theorem 21 (The First Mean Value Theorem for Integrals). If f is continuous on [a,b], then it achieves its average value. That is there is a $\xi \in (a,b)$ with

$$f(\xi) = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Problem 12. Prove this. *Hint*: As f is continuous on the closed bounded set [a,b], it achieves its maximum and minimum on this interval. Let $m = \min\{f(x) : x \in [a,b]\}$ and $M = \max\{f(x) : x \in [a,b]\}$ and let $\alpha, \beta \in [a,b]$ such that $f(\alpha) = m$ and $f(\beta) = M$. Now

$$f(\alpha) = m = \frac{1}{b-a} \int_a^b m \, dx \le \frac{1}{b-a} \int_a^b f(x) \, dx$$

and

$$f(\beta) = M = \frac{1}{b-a} \int_a^b M \, dx \ge \frac{1}{b-a} \int_a^b f(x) \, dx$$

and recall the intermediate value theorem.

We now prove a somewhat stronger version of the second form of the Fundamental Theorem of Calculus.

Theorem 22. Let F be continuous on [a,b] assume that F is differentiable on (a,b) and let

$$f(x) = F'(x)$$

on [a,b]. Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

(This differs from Theorem 18 as we are only assuming that f is integrable rather than continuous.)

Proof. Let $\varepsilon > 0$. As f is integrable there are step functions φ and ψ on [a,b] with

(1)
$$\varphi \leq f \leq \psi$$
 and $\int_a^b f \, dx - \varepsilon \leq \int_a^b \varphi \, dx \leq \int_a^b \psi \, dx \leq \int_a^b f \, dx + \varepsilon$.

We can assume there is a partition $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ such that if $I_j = [x_{j-1}, x_j)$ then

$$\varphi = \sum_{j=1}^{n} m_j \chi_{I_j}, \qquad \psi = \sum_{j=1}^{n} M_j \chi_{I_j}.$$

We write F(b) - F(a) as a telescoping sum:

$$F(b) - F(a) = F(x_n) - F(x_0) = \sum_{j=1}^{n} (F(x_j) - F(x_{j-1}))$$

As F is differentiable on $[x_{j-1}, x_j]$ we can apply the mean value theorem to get that there is a $\xi_j \in (x_{j-1}, x_j)$ with

$$F(x_j) - F(x_{j-1}) = F'(\xi_j)(x_j - x_{j-1}) = f(\xi_j)(x_j - x_{j-1}) = f(\xi_j)|I_j|.$$

Combining these equations gives

$$F(b) - F(a) = \sum_{j=1}^{n} (F(x_j) - F(x_{j-1})) = \sum_{j=1}^{n} f(\xi_j) |I_j|.$$

But $\varphi \leq f \leq \psi$ which implies $m_j \leq f(\xi_j) \leq M_j$ and thus

$$\int_a^b \varphi \, dx = \sum_{j=1}^n m_j |I_j| \le F(b) - F(a) = \sum_{j=1}^n f(\xi_j) |I_j| \le \sum_{j=1}^n M_j |I_j| = \int_a^b \psi \, dx.$$

Combining this with the inequalities (1) gives

$$\int_{a}^{b} f \, dx - \varepsilon \le F(b) - F(a) \le \int_{a}^{b} f \, dx + \varepsilon.$$

As $\varepsilon > 0$ was arbitrary this gives $F(b) - F(a) = \int_a^b f \, dx$ as required. \square

Problem 13. To see that Theorem 22 really is stronger than Theorem 18 we need to show that there is a function F on an interval [a, b] such that f = F' exists and is integrable on (a, b) but with f not continuous on (a, b). Let

$$F(x) = \begin{cases} x^2 \cos(1/x), & x \neq 0; \\ 0, & x = 0 \end{cases}$$

Show that F is differentiable at all points of \mathbf{R} , and f = F' is bounded on [-1,1], but f is not continuous at x = 0. As f is continuous at all points other than 0 it is integrable on [-1,1].

We can now give the familiar integration by parts formula.

Theorem 23 (Integration by Parts). Let u and v continuous on [a,b], differentiable on (a,b), with u' and v' integrable on [a,b]. Then

$$\int_{a}^{b} u(x)v'(x) \, dx = u(x)v(x) \Big|_{x=a}^{b} - \int_{a}^{b} u'(x)v(x) \, dx.$$

Problem 14. Prove this. *Hint:* This follows from the product rule and the Fundamental Theorem of Calculus in the form

$$\int_{a}^{b} \left(u(x)v(x) \right)' dx = u(x)v(x) \Big|_{x=a}^{b}.$$

You do have to worry a bit about if the integrals involved exist. Theorem 11 should help here. \Box

We now use integration by parts to give another form of the remainder in Taylor's Theorem.

Lemma 24. Let f be k+1 times differentable on an open interval (α, β) and assume that $f^{(k+1)}$ is integrable. Then for $a, x \in (\alpha, \beta)$ we have

$$\int_{a}^{x} \frac{(x-t)^{k-1}}{(k-1)!} f^{(k)}(t) dt = \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \int_{a}^{x} \frac{(x-t)^{k}}{k!} f^{(k+1)}(t) dt.$$

Problem 15. Prove this. *Hint:* Use integration by parts with $v'(t) = \frac{(x-t)^{k-1}}{(k-1)!}$ and $u = f^{(k)}(t)$.

Theorem 25 (Taylor's Theorem with Integral form of the Remainder). Let f be n+1 times differentable on (α,β) and assume that $f^{(n+1)}$ is integrable. Then for $a, x \in (\alpha,\beta)$

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x)$$

where the remainder term $R_n(x)$ is given by

$$R_n(x) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Problem 16. Prove this. Hint: Note that Lemma 24 can be rewritten as

$$R_{k-1}(x) = \frac{f^{(k)}(a)}{k!}(x-a)^k + R_k(x)$$

and by the Fundamental Theorem of Calculus and integration by parts

$$f(x) - f(a) = \int_{a}^{x} f'(t) dt$$

$$= -\int_{a}^{x} (-1)f'(t) dt$$

$$= -\int_{a}^{x} \left(\frac{d}{dt}(x-t)\right) f'(t) dt$$

$$= -\frac{d}{dt}(x-t)f'(t)\Big|_{t=a}^{x} + \int_{a}^{x} (x-t)f''(t) dt$$

$$= f(a)(x-a) + R_{1}(x).$$

Now use induction.

Theorem 26 (Change of Variable Formula). Let the map x = u(t) map the interval [c, d] into the interval [a, b] and assume that u'(t) is integrable on [c, d]. Then for any continuous function f on [a, b]

$$\int_{u(c)}^{u(d)} f(x) \, dx = \int_{c}^{d} f(u(t))u'(t) \, dt.$$

Problem 17. Prove this. *Hint:* Do this in steps

- (a) Explain why both the integrals exist.
- (b) Define F on [a, b] by

$$F(x) = \int_{a}^{x} f(y) \, dy$$

and explain why

$$F'(x) = f(x)$$
 and $\int_{u(c)}^{u(d)} f(x) dx = F(u(d)) - F(u(c)).$

(c) On [c,d] define

$$G(t) = F(u(t)).$$

By the chain rule

$$G'(t) = F'(u(t))u'(t) = f(u(t))u'(t)$$

and so by Theorem 22

$$\int_{-1}^{d} f(u(t))u'(t) dt = \int_{-1}^{d} G'(t) dt = G(d) - G(c).$$

(d) Put the pieces above together to finish the proof.

0.1. An aside on defining the logarithm and exponential. Define a function $L:(0,\infty)\to \mathbf{R}$ by

$$L(x) = \int_{1}^{x} \frac{dx}{x}.$$

We know this should be the natural logarithm, but we now verify directly from its definition that it has the correct properties.

Proposition 27. The derivative of L is

$$L'(x) = \frac{1}{x}$$

and thus L is strictly increasing. Therefore L is one-to-one (that is injective).

Proof. By the Fundamental Theorem of Calculus

$$L'(x) = \frac{1}{x} > 0$$

as x > 0 which implies L is strictly increasing.

Proposition 28. Let a, b > 0 then

$$\int_{a}^{b} \frac{dx}{x} = L(b/a).$$

Problem 18. Prove this. *Hint*: In the integral $\int_a^b \frac{dx}{x}$ do the change of variable x = at to get

$$\int_{a}^{b} \frac{dx}{x} = \int_{1}^{b/a} \frac{dt}{t}.$$

Proposition 29. If a, b > 0 then

$$L(ab) = L(a) + L(b).$$

Problem 19. Prove this. *Hint:*

$$L(ab) = \int_1^{ab} \frac{dx}{x} = \int_1^a \frac{dx}{x} + \int_a^{ab} \frac{dx}{x}$$

and use Proposition 28.

The last Proposition and induction yield:

Corollary 30. If a > 0 and n is a positive integer

$$L(a^n) = nL(a).$$

Proposition 31. The function $L:(0,\infty)\to \mathbf{R}$ is a bijection.

Problem 20. Prove this. *Hint*: Recall the saying that L is a bijection is just saying that it is one-to-one and onto. We have already seen that L is injective. To see that it is surjective (that is onto) note that L(2) > 0 and L(1/2) < 0. Also for a positive integer n

$$L(2^n) = nL(2)$$
 and $L(1/2^n) = nL(1/2)$.

If y_0 is any real number we can find (by Archimedes' principle) a positive integer n such that

$$nL(1/2) < y_0 < nL(2)$$
.

Also we know that L is continuous (why?). Now you should be able to show that there is a $x_0 \in (0, \infty)$ with $L(x_0) = y_0$.

Because the function $L:(0,\infty)\to \mathbf{R}$ is bijective, it has an inverse $E:\mathbf{R}\to (0,\infty)$. As L is strictly increasing, continuous, and differentiable with $L'(x)\neq 0$ for all x theorems from last term imply that E is strictly increasing, continuous, and differentiable.

Proposition 32. The function E satisfies E(0) = 1 and

$$E'(x) = E(x).$$

Problem 21. Prove this. *Hint*: L(1) = 0. And as L and E are inverses of each other L(E(x)) = x for all $x \in \mathbf{R}$. Therefore $\frac{d}{dx}L(E(x)) = 1$. Use the chain rule and that we know the derivative of L.

Proposition 33. For all real numbers x

$$E(-x) = \frac{1}{E(x)}.$$

Problem 22. Prove this. *Hint:* There are several ways to do this. One is to take the derivative of E(x)E(-x) and show it is zero. Anther is to note that L(a) + L(1/a) = L(1) = 0

Proposition 34. For all real numbers a, b

$$E(a+b) = E(a)E(b).$$

Problem 23. Prove this. *Hint*: One way is to deduce this from the property $L(\alpha\beta) = L(\alpha) + L(\beta)$ of L. Anther is to show that the derivative of the function

$$f(x) = E(x+a)E(-x)$$

is zero and therefore f is constant.

Proposition 35. If n is any integer, positive or negative, and t is any real number

$$E(nt) = E(t)^n$$

If m is a positive integer then

$$E\left(\frac{1}{m}t\right)^m = E(t)$$

and thus $E(\frac{1}{m}t)$ is the positive m-th root of E(t).

Problem 24. Prove this.

In light of Proposition 35 If r is a rational number, say r = n/m with m, n integers and m > 0, then for a positive number a we can define

$$a^r = a^{n/m} = (a^n)^{1/m}$$

where $(a^n)^{1/m}$ is the positive m-th root of a^n . We would also like to define a^r when r is irrational. Note that when r = m/n and a = E(t), then Proposition 35 shows us that

(2)
$$a^r = E(t)^{n/m} = (E(t)^n)^{1/m} = E(nt)^{1/m} = E\left(\frac{1}{m}nt\right) = E(rt).$$

But E(rt) makes sense for all real numbers r. We now formalize all this.

Definition 36. We now officially define logarithm of a positive number x to be

$$\ln(x) = L(x) = \int_1^x \frac{dt}{t},$$

the number e to be

$$e = E(1)$$

and for any real number x we define the power e^x by

$$e^x = E(x)$$
.

Definition 37. Let a > 0. Then for any real number r define

$$a^r = e^{r \ln(a)}$$

(Note if $a = E(t) = e^t$ then $\ln(a) = t$ and this becomes $a^r = e^{r \ln(a)} = e^{rt} = E(rt)$ which agrees with our preliminary definition (2).)

Proposition 38. If a > 0 and r = n/m is a rational number with m > 0, then

$$a^r = (a^n)^{1/m}$$

so that our definition agrees with what it should be on the rational numbers.

Proposition 39. With these definition the following hold

(a) If a > 0 then for all $r, s \in \mathbf{R}$

$$a^r a^s = a^{r+s}, \quad \frac{a^r}{a^s} = a^{r-s}.$$

and,

$$(a^r)^s = a^{rs}.$$

(b) If $r \in \mathbf{R}$ and a, b > 0 then

$$a^r b^r = (ab)^r$$
.

Problem 26. Prove this.

Proposition 40. Let r be a real number and on define $f:(0,\infty)\to(0,\infty)$ by

$$f(x) = x^r.$$

Then f is differentiable and

$$f'(x) = rx^{r-1}.$$

Problem 27. Prove this. *Hint:* We know that $E(x) = e^x$ is differentiable with derivative E'(x) = E(x) and that $\ln(x)$ is differentiable with $\frac{d}{dx} \ln(x) = 1/x$. Thus $f(x) = e^{r \ln(x)} = E(r \ln(x))$ is a composition of differentiable functions. Use the chain rule to derive the formula for f'(x).

Proposition 41. Let a be a positive real number and define $g: \mathbf{R} \to (0, \infty)$ by

$$g(x) = a^x$$
.

Then g is differentable and

$$g'(x) = \ln(a)a^x.$$

Problem 28. Prove this.