Math 554

Homework

1. Existence results for the Riemannian integral.

Here is a theorem we missed because of the snow days.

Theorem 1. The function f defined on [a,b] is Riemann integrable if and only if for all $\varepsilon > 0$ there are step functions ϕ and ψ with

$$\phi \le f \le \psi$$

on [a,b] and

$$\int_{a}^{b} (\psi(x) - \phi(x)) \, dx \le \varepsilon.$$

We are not going to go back and prove this, but here are some applications. First a preliminary result.

Lemma 2. Let $f: [a,b] \to \mathbb{R}$ be continuous and $\varepsilon > 0$. Then there is a partition $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$ such that for each interval $[x_{j-1}, x_j]$ if $x, y \in [x_{j-1}, x_j]$, then

$$|f(x) - f(y)| \le \frac{\varepsilon}{b-a}$$

Problem 1. Prove this. *Hint:* As f is continuous on the compact set [a,b] it is uniformly continuous. Therefore there is a $\delta > 0$ such that for all $x, y \in [a,b]$

$$|x - y| \le \delta \implies |f(x) - f(y)| \le \frac{\varepsilon}{b - a}.$$

Now choose a partition that is δ fine and show it works.

Theorem 3. If $f: [a,b] \to \mathbb{R}$ is continuous, then it is Riemann integrable.

Problem 2. Prove this. *Hint:* Let $\varepsilon > 0$. Choose a partition as in Lemma 2 and for each j with $1 \le j \le n$ set

$$M_j := \max\{f(x) : x_{j-1} \le x \le x_j\}, \qquad m_j = \min\{f(x) : x_{j-1} \le x \le x_j\}.$$

As $[x_{j-1}, x_j]$ is compact the maximums and minimums exist and there are $\xi_j, \eta_j \in [x_{j-1}, x_j]$ with

$$f(\xi_i) = m_i, \qquad f(\eta_i) = M_i.$$

Let ϕ and ψ be the step functions

$$\phi(x) = \begin{cases} m_j, & x_{j-1} \le x < x_j \text{ and } 1 \le j \le n; \\ f(b), & x = x_n = b. \end{cases}$$

and

$$\psi(x) = \begin{cases} M_j, & x_{j-1} \le x < x_j \text{ and } j < n; \\ f(b), & x = x_n = b. \end{cases}$$

and show

$$\phi \le f \le \psi$$

on [a, b] and

$$\int_{a}^{b} (\psi(x) - \phi(x)) \, dx < \varepsilon.$$

Now use Theorem 1.

Lemma 4. Let $\alpha, \beta \in \mathbb{R}$. Then

$$|\max\{\alpha, 0\} - \max\{\beta, 0\}| \le |\alpha - \beta|.$$

Problem 3. Prove this.

Proposition 5. Let f be Riemann integrable on [a,b]. Then the function

$$g = \max\{f, 0\}$$

is also Riemann integrable on [a, b].

Problem 4. Prove this. *Hint:* Let $\varepsilon > 0$. By Theorem 1 there are step functions ϕ and ψ such that

$$\phi \leq f \leq \psi$$

on [a, b] and

$$\int_{a}^{b} (\psi(x) - \phi(x)) \, dx \le \varepsilon.$$

Then explain briefly why

$$\phi_0(x) := \max\{\phi(x), 0\}, \qquad \psi_0(x) := \max\{\psi(x), 0\}$$

are step functions with

$$\phi_0 \le \max\{f, 0\} \le \psi_0$$

and

$$\int_{a}^{b} (\psi_0(x) - \phi_0(x)) dx \le \int_{a}^{b} (\psi(x) - \phi(x)) dx \le \varepsilon$$

and why this is enough to finish the proof.

Lemma 6. If $\alpha\beta \in \mathbb{R}$, then

$$\begin{aligned} \min\{\alpha,0\} &= -\max\{-\alpha,0\} \\ |\alpha| &= \max\{\alpha,0\} + \max\{-\alpha,0\} \\ \max\{\alpha,\beta\} &= \alpha + \max\{0,\beta-\alpha\} \\ \min\{\alpha,\beta\} &= \alpha + \min\{0,\beta-\alpha\} \end{aligned}$$

Problem 5. Convince yourself this is true. I will not collect this problem, but be prepared to present it in class. \Box

Proposition 7. If f and g are integrable on [a,b], then so are |f|, $\max\{f,g\}$, and $\min\{f,g\}$.

Problem 6. Use Proposition 5 and Lemma 6 to prove this. \Box

Proposition 8. If f is integrable on [a,b], then so is f^2 .

Problem 7. Prove this. *Hint*: As $f^2 = |f|^2$ and |f| is also integrable by Proposition 7 we can relace f by |f| and assume that $f \geq 0$. As f is integrable it is bounded and therefore there is a B > 0 such that $0 \leq f \leq B$. By Theorem 1 there are step functions ϕ and ψ with

$$\phi \leq f \leq \psi$$

on [a, b] and

$$\int_{a}^{b} (\psi(x) - \phi(x)) \, dx < \frac{\varepsilon}{2B}.$$

By replacing ϕ with max $\{0,\phi\}$ and ψ by min $\{B,\psi\}$ we can assume

$$0 \le \phi \le f \le \psi \le B$$
.

Then ϕ^2 and ψ^2 are step functions and

$$\phi^2 < f^2 < \psi^2$$

on [a, b]. Also

$$\int_{a}^{b} (\psi^{2}(x) - \phi^{2}(x)) dx = \int_{a}^{b} (\psi(x) + \phi(x))(\psi(x) - \phi(x)) dx.$$

Use this to show

$$\int_{a}^{b} (\psi^{2}(x) - \phi^{2}(x)) dx \le \varepsilon$$

and thus compete the proof.

Theorem 9. Let f and g be integrable on the interval [a,b]. Then the product fg is also integrable on [a,b].

Problem 8. Prove this. *Hint:* Yet anther artfully complication trick. First show

$$fg = \frac{(f+g)^2 - (f-g)^2}{4}.$$

Now it should be easy to complete the proof using Proposition 8. \Box

2. More on the Fundamental Theorem of Calculus and its Consequences.

We have proven the following

Theorem 10 (Fundamental Theorem of Calculus Form 1). Let f be Riemann integrable on [a,b] and define $F:[a,b] \to \mathbb{R}$ by

$$F(x) = \int_{a}^{x} f(t) dt.$$

Then at any point $x \in (a,b)$ where f is continuous the function F is continuous at x and

$$F'(x) = f(x).$$

The form of the Fundamental Theorem that is used most often in evaluating integrals is

Theorem 11 (Fundamental Theorem of Calculus Form 2). Let f be continuous on [a,b] and let F be an **antiderivative** for f on [a,b]. (That is F is continuous on [a,b] and F'(x) = f(x) for all $x \in (a,b)$.) Then

$$\int_{a}^{b} (x) \, dx = F(x) \Big|_{a}^{b} = F(b) - F(a).$$

Problem 9. Prove this. *Hint:* One way to start is to let $G: [a,b] \to \mathbb{R}$ be

$$G(x) = \int_{a}^{x} f(t) dt$$

and show that (F-G)'=0 on (a,b) and thus F-G is constant on [a,b]. \square

Theorem 11 is what lets us do calculations we know and love such as

$$\int_0^2 x^3 \, dx = \frac{x^4}{4} \Big|_0^2 = \frac{2^4 - 0^4}{4} = 4.$$

Theorem 12 (Integration by Parts). Let u, v be continuous on [a, b] and differentiable on (a, b) and assume that u' and v' are differentiable on (a, b). Then

$$\int_{a}^{b} u(x)v'(x) \, dx = u(x)v(x) \Big|_{a}^{b} - \int_{a}^{b} u'(x)v(x) \, dx.$$

Problem 10. Prove this. *Hint:* This follows form the product rule and the Fundamental Theorem of Calculus in the form

$$\int_{a}^{b} (u(x)v(x))' dx = u(x)v(x)\Big|_{a}^{b}.$$

You do have to worry about the existence of the integrals involved, but Theorem 3 and Theorem 9 should take care of this. \Box

Here is another consequence of the Fundamental Theorem of Calculus that you are use to using to evaluate integrals.

Theorem 13 (Change of Variable Formula). Let the map x = u(t) map the interval [c,d] into the interval [a,b] and assume that u'(t) is continuous on [c,d]. Then for any integrable function f on [a,b]

$$\int_{u(c)}^{u(d)} f(x) \, dx = \int_{c}^{d} f(u(t))u'(t) \, dt.$$

Problem 11. Prove this. *Hint:* Do this in steps

- (a) Explain why both the integrals exist.
- (b) Define F on [a, b] by

$$F(x) = \int_{a}^{x} f(y) \, dy$$

and explain why

$$F'(x) = f(x)$$
 and $\int_{u(c)}^{u(d)} f(x) dx = F(u(d)) - F(u(c)).$

(c) On [c,d] define

$$G(t) = F(u(t)).$$

By the chain rule

$$G'(t) = F'(u(t))u'(t) = f(u(t))u'(t)$$

and so by Theorem 11

$$\int_{c}^{d} f(u(t))u'(t) dt = \int_{c}^{d} G'(t) dt = G(d) - G(c).$$

- (d) Put the pieces above together to finish the proof. \Box
- 2.1. More on Taylor's Theorem. We now use integration by parts to give another form of the remainder in Taylor's Theorem.

Lemma 14. Let f be k+1 times differentiable on an open interval (α, β) and assume that $f^{(k+1)}$ is integrable. Then for $a, x \in (\alpha, \beta)$ we have

$$\int_{a}^{x} \frac{(x-t)^{k-1}}{(k-1)!} f^{(k)}(t) dt = \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \int_{a}^{x} \frac{(x-t)^{k}}{k!} f^{(k+1)}(t) dt.$$

Problem 12. Prove this. *Hint*: Use integration by parts with $v'(t) = \frac{(x-t)^{k-1}}{(k-1)!}$ and $u = f^{(k)}(t)$.

Theorem 15 (Taylor's Theorem with Integral form of the Remainder). Let f be n+1 times differentiable on (α,β) and assume that $f^{(n+1)}$ is integrable. Then for $a, x \in (\alpha,\beta)$

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x)$$

where the remainder term $R_n(x)$ is given by

$$R_n(x) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Problem 13. Prove this. Hint: Note that Lemma 14 can be rewritten as

$$R_{k-1}(x) = \frac{f^{(k)}(a)}{k!}(x-a)^k + R_k(x)$$

and by the Fundamental Theorem of Calculus and integration by parts

$$f(x) - f(a) = \int_{a}^{x} f'(t) dt$$

$$= -\int_{a}^{x} (-1)f'(t) dt$$

$$= -\int_{a}^{x} \left(\frac{d}{dt}(x-t)\right) f'(t) dt$$

$$= -\frac{d}{dt}(x-t)f'(t)\Big|_{t=a}^{x} + \int_{a}^{x} (x-t)f''(t) dt$$

$$= f(a)(x-a) + R_{1}(x).$$

Now use induction.

3. The Logarithm and Exponential.

Define a function $L:(0,\infty)\to\mathbb{R}$ by

$$L(x) = \int_{1}^{x} \frac{dt}{t}.$$

We know this should be the natural logarithm, but we now verify directly from its definition that it has the correct properties.

Proposition 16. The derivative of L is

$$L'(x) = \frac{1}{x}$$

and thus L is strictly increasing. Therefore L is one-to-one (that is injective).

Proof. By the Fundamental Theorem of Calculus

$$L'(x) = \frac{1}{x} > 0$$

as x > 0 which implies L is strictly increasing.

Proposition 17. Let a, b > 0 then

$$\int_{a}^{b} \frac{dx}{x} = L(b/a).$$

Problem 14. Prove this. *Hint*: In the integral $\int_a^b \frac{dx}{x}$ do the change of variable x = at to get

$$\int_{a}^{b} \frac{dx}{x} = \int_{1}^{b/a} \frac{dt}{t}.$$

Proposition 18. If a, b > 0 then

$$L(ab) = L(a) + L(b).$$

Problem 15. Prove this. *Hint:*

$$L(ab) = \int_1^{ab} \frac{dx}{x} = \int_1^a \frac{dx}{x} + \int_a^{ab} \frac{dx}{x}$$

and use Proposition 17.

The last Proposition and induction yield:

Corollary 19. If a > 0 and n is a positive integer

$$L(a^n) = nL(a).$$

Proposition 20. The function $L:(0,\infty)\to\mathbb{R}$ is a bijection.

Problem 16. Prove this. *Hint:* Recall the saying that L is a bijection is just saying that it is one-to-one and onto. We have already seen that L is injective. To see that it is surjective (that is onto) note that L(2) > 0 and L(1/2) < 0. Also for a positive integer n

$$L(2^n) = nL(2)$$
 and $L(1/2^n) = nL(1/2)$.

If y_0 is any real number we can find (by Archimedes' principle) a positive integer n such that

$$nL(1/2) < y_0 < nL(2)$$
.

Also we know that L is continuous (why?). Now you should be able to show that there is a $x_0 \in (0, \infty)$ with $L(x_0) = y_0$.

Because the function $L:(0,\infty)\to\mathbb{R}$ is bijective, it has an inverse $E:\mathbb{R}\to(0,\infty)$. As L is strictly increasing, continuous, and differentiable with $L'(x)\neq 0$ for all x we have theorems which tell us that E is strictly increasing, continuous, and differentiable.

Proposition 21. The function E satisfies E(0) = 1 and

$$E'(x) = E(x)$$
.

Problem 17. Prove this. *Hint*: L(1) = 0. And as L and E are inverses of each other L(E(x)) = x for all $x \in \mathbb{R}$. Therefore $\frac{d}{dx}L(E(x)) = 1$. Use the chain rule and that we know the derivative of L.

Proposition 22. For all real numbers x

$$E(-x) = \frac{1}{E(x)}.$$

Problem 18. Prove this. *Hint:* There are several ways to do this. One is to take the derivative of E(x)E(-x) and show it is zero. Anther is to note that L(a) + L(1/a) = L(1) = 0

Proposition 23. For all real numbers a, b

$$E(a+b) = E(a)E(b).$$

Problem 19. Prove this. *Hint*: One way is to deduce this from the property $L(\alpha\beta) = L(\alpha) + L(\beta)$ of L. Anther is to show that the derivative of the function

$$f(x) = E(x+a)E(-x)$$

is zero and therefore f is constant.

Proposition 24. If n is any integer, positive or negative, and t is any real number

$$E(nt) = E(t)^n$$

If m is a positive integer then

$$E\left(\frac{1}{m}t\right)^m = E(t)$$

and thus $E(\frac{1}{m}t)$ is the positive m-th root of E(t).

Problem 20. Prove this.

In light of Proposition 24 If r is a rational number, say r = n/m with m, n integers and m > 0, then for a positive number a we can define

$$a^r = a^{n/m} = (a^n)^{1/m}$$

where $(a^n)^{1/m}$ is the positive m-th root of a^n . We would also like to define a^r when r is irrational. Note that when r = m/n and a = E(t), then Proposition 24 shows us that

(1)
$$a^r = E(t)^{n/m} = (E(t)^n)^{1/m} = E(nt)^{1/m} = E\left(\frac{1}{m}nt\right) = E(rt).$$

But E(rt) makes sense for all real numbers r. We now formalize all this.

Definition 25. We now officially define logarithm of a positive number x to be

$$\ln(x) = L(x) = \int_1^x \frac{dt}{t},$$

the number e to be

$$e = E(1)$$

and for any real number x we define the power e^x by

$$e^x = E(x)$$
.

Definition 26. Let a > 0. Then for any real number r define

$$a^r = e^{r \ln(a)}$$
.

(Note if $a = E(t) = e^t$ then $\ln(a) = t$ and this becomes $a^r = e^{r \ln(a)} = e^{rt} = E(rt)$ which agrees with our preliminary definition (1).)

Proposition 27. If a > 0 and r = n/m is a rational number with m > 0, then

$$a^r = (a^n)^{1/m}$$

so that our definition agrees with what it should be on the rational numbers.

Problem 21. Prove this.

Proposition 28. With these definition the following hold

(a) If a > 0 then for all $r, s \in \mathbb{R}$

$$a^r a^s = a^{r+s}, \quad \frac{a^r}{a^s} = a^{r-s}.$$

and,

$$(a^r)^s = a^{rs}.$$

(b) If $r \in \mathbb{R}$ and a, b > 0 then

$$a^r b^r = (ab)^r$$
.

Problem 22. Prove this.

Proposition 29. Let r be a real number and on define $f:(0,\infty)\to(0,\infty)$ by

$$f(x) = x^r$$
.

Then f is differentable and

$$f'(x) = rx^{r-1}.$$

Problem 23. Prove this. *Hint:* We know that $E(x) = e^x$ is differentiable with derivative E'(x) = E(x) and that $\ln(x)$ is differentiable with $\frac{d}{dx} \ln(x) = 1/x$. Thus $f(x) = e^{r \ln(x)} = E(r \ln(x))$ is a composition of differentiable functions. Use the chain rule to derive the formula for f'(x).

Proposition 30. Let a be a positive real number and define $g: \mathbb{R} \to (0, \infty)$ by

$$g(x) = a^x$$
.

Then g is differentable and

$$g'(x) = \ln(a)a^x.$$

Problem 24. Prove this.

4. Some problems on Riemann sums.

Problem 25. Find the following limits by interrupting them as Riemann sums.

(a)
$$\lim_{n \to \infty} \frac{1}{n\sqrt{n}} \sum_{k=1}^{n} \sqrt{k}$$
.

(b)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} \frac{1}{1 + (k/n)^2}$$
.

(c)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=-n}^{n} \cos(k\pi/2)$$
.