Modern Geometry Homework.

1. Projective planes.

In planar projective geometry we have three undefined notations. The first a **point**, the second it a **line**, and the third is relation **incidence** between a point and a line. There are three axioms:

Axiom 1 (First Axiom of Projective Geometry). For any pair of distinct points there is unique line incident with these points. \Box

Axiom 2 (Second Axiom of Projective Geometry). For any pair of distinct lines there is unique point incident with these lines.

Axiom 3 (Thrid Axiom of Projective Geometry). There are four points no three of which are incident with the same line. \Box

We will often use the symbol \mathbb{P}^2 to denote a projective plane.

Proposition 1. Let ℓ be a line in \mathbb{P}^2 and P a point of \mathbb{P}^2 that is not on ℓ . Let (P) be the set of all lines that are incident with P. Then there is a bijection between ℓ and $\mathcal{L}(P)$.

Problem 1. Prove this. *Hint:* Define $f: \ell \to \mathcal{L}(P)$ by

$$f(Q) = \overleftrightarrow{QP}$$
.

Define $q: \mathcal{L}(P) \to \ell$ by

$$q(m) = m \cap \ell$$
.

Now

$$f(g(m)) = \overrightarrow{g(m)P}$$
 (Definition of f)
= m (m is a line incident with P and $g(m)$)

and

$$g(f(Q)) = m \cap f(Q)$$
 (Definition of g)
= Q (Q is a point incident with ℓ and $f(Q)$).

This shows that f and g are bijections. Draw a picture that illustrates this proof.

Proposition 2. Given two distinct lines ℓ and m in the projective plane \mathbb{P}^2 , there is a point that is not incident with either ℓ or m.

Proof. Towards a contradiction If this is If this is false, then every point of \mathbb{P}^2 is on either ℓ or m (or both). By the Thrid Axiom of Projective Geometry, there are four points P_1 , P_2 , P_3 , P_4 such that no three of them are on the same line. So we much have two of them, say P_1 and P_2 , on ℓ and the other ℓ two, ℓ and ℓ and ℓ on ℓ and none of these are equal to $\ell \cap m$. Then the point ℓ ℓ ℓ ℓ are on the either ℓ or ℓ or ℓ or ℓ or ℓ are on the either ℓ or ℓ or ℓ or ℓ or ℓ or ℓ or ℓ are on the either ℓ or ℓ or

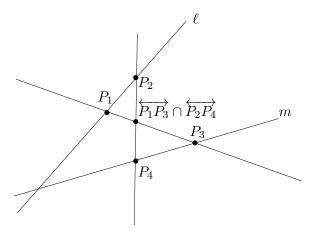


Figure 1

Proposition 3. Let ℓ and m be lines in \mathbb{P}^2 . Show that there is a bijection between ℓ and m.

Problem 2. Prove this along the following line. If $\ell = m$, then this is clear. So assume that $\ell \neq m$ and use Proposition 1 to find a point P that is not on either ℓ or m. Then by Proposition 1 there is a bijection $f_1 : \ell \mathcal{L}(P)$ and a bijection $f_2 : m : \mathcal{L}(P)$. Use f_1 and f_2 to get a bijection between ℓ and m.

Problem 3. Give anther proof of Proposition 3 along the following lines. Again we can assume that $\ell \neq m$ and that we have a point P that is on neither ℓ or m. Define a map $f : \ell \to m$ by

$$f(Q) = \overrightarrow{PQ} \cap m.$$

Draw a picture to show what f does and show that f is a bijection.

Proposition 4. Let P and Q be points of \mathbb{P}^2 and let $\mathcal{L}(P)$ be the collection of all lines that are incident with P and $\mathcal{L}(Q)$ the set of all lines incident with Q. Then there is a bijection between $\mathcal{L}(P)$ and $\mathcal{L}(Q)$.

Problem 4. Prove this. *Hint*: One way would be to use Proposition 1. \Box

The following is the projective version of Theorem 14 on Homework 1.

Theorem 5. Assume that some line ℓ of \mathbb{P}^2 only has a finite number of points, say n+1. Then

- (a) Every line has exactly n+1 points incident with it.
- (b) Every point has exactly n+1 lines incident with it.
- (c) \mathbb{P}^2 contains exactly $n^2 + n + 1$ points.
- (d) \mathbb{P}^2 contains exactly $n^2 + n + 1$ lines.

Problem 5. Prove this.

2. Constructing projective planes from affine planes.

We recall the axioms of affine geometry.

Axiom 1 (First Axiom of Affine Geometry). Given an two distinct points, P and Q, there is a unique line, l, that is incident with both of them.

Axiom 2 (Second Axiom of Affine Geometry). Given a line ℓ and a point P not on the line, then there is a unique line m incident with P that is parallel to ℓ .

Axiom 3 (Thrid Axiom of Affine Geometric). There exist four points such that no three of them are on the same line.

Let \mathbb{A}^2 be an affine plane. We will extend this to a projective plane \mathbb{P}^2 . For each line ℓ we add a point P_{ℓ} to ℓ and call the point the **point** at **infinity** on ℓ , or the **ideal point** on ℓ . Given two line ℓ and m we say they have the same point at infinity exactly when they are parallel. That is

$$P_{\ell} = P_m \iff \ell \parallel m.$$

For each line ℓ of \mathbb{A}^2 let ℓ^* be ℓ with P_{ℓ} attached.

We add one line, ℓ_{∞} , the line at infinity.

The incidence relations are that if P is a