Mathematics 172 Homework

We saw in class today that if we assume that a population grows with an intrinsic growth rate of r (when the population size is small) but there is a **carrying capacity**, K, where for populations of size larger than K the per capita growth rate becomes negative, that a reasonable model for the growth of the population size is

$$P_{t+1} = P_t + rP_t \left(1 - \frac{P_t}{K} \right).$$

More generally we will see models where the growth is determined by

$$P_{t+1} = f(P_t)$$

where f(P) is some function of the population. Such an equation is called a **difference equation** and what tells us is that if we know the size of the population, P_t , is the year, t, then the size of the population the next year is $P_{t+1} = f(P_t)$. Here is an example. Assume the difference equation is

$$P_{t+1} = P_t + .3P_t \left(1 - \frac{P_t}{100} \right).$$

Assume that we know that in some year the population is $P_0 = 80$. Then the population the next year is

$$P_1 = P_0 + .3P_0 \left(1 - \frac{P_0}{100} \right) = 80 + .3P_t \left(1 - \frac{80}{100} \right) = 84.8.$$

And the population the year after that is

$$P_1 = P_0 + .3P_1 \left(1 - \frac{P_1}{100} \right) = 84.8 + .3P_t \left(1 - \frac{84.8}{100} \right) = 88.666880.$$

1. Show that for this difference equation we have

$$P_0 = 80.000$$

 $P_1 = 84.800$
 $P_2 = 88.667$
 $P_3 = 91.681$
 $P_4 = 93.969$
 $P_5 = 95.670$

2. Show that for the diffence equation

$$N_{t+1} = \frac{20N_t}{1 + .2N_t^2}$$

and $N_0 = 5$ that

$$P_0 = 5.000$$

 $P_1 = 16.667$
 $P_2 = 5.894$
 $P_3 = 14.832$
 $P_4 = 6.592$

3. Let $P_{t+1} = f(P_t)$ be a difference equation and let P_* be a number such that $f(P_*) = P_*$. Such points are called **equilibrium** points of the equation. Then show that if $P_0 = P_*$ that $P_t = P_*$ for all t. Solution: Here is the idea. $P_1 = f(P_0) = f(P_*) = P_*$. Therefore $P_1 = P_*$. Now $P_2 = f(P_1) = f(P_*) = P_*$. Now you use similar calculations to show that $P_3 = P_4 = P_5 = P_*$. This pattern continues for all t.

4. Find all the equilibrium points of

$$P_{t+1} = P_t + .3P_t \left(1 - \frac{P_t}{200} \right).$$

Solution: This is no more that a complicated way of asking us to find the solutions to the equation

$$P = P + .3P\left(1 - \frac{P}{200}\right).$$

Subtracting P from both sides gives

$$0 = .3P\left(1 - \frac{P}{200}\right).$$

and now a bit of algebra shows that the only equilibrium points are

$$P_* = 0$$
 and $P_* = 200$