\sim		4.0	
()	uiz	-10	

Name: K-c y

You must show your work to get full credit.

A problem with the discrete logistic equation

$$N_{t+1} = N_t + rN_t \left(1 - \frac{N_t}{K}\right)$$

is that the right hand side of this equation becomes negative if N_t is very large. But this would imply that N_{t+1} is negative, which makes no sense biologically. One way people have fixed this problem is by using the equation

 $N_{t+1} = N_t e^{r\left(1 - \frac{N_t}{K}\right)}$

where r is still the per capita growth rate for the unconstrained population and K is still the carrying capacity. Let us analyze this model when r = 1.2 and K = 100. Then the equation becomes

$$N_{t+1} = N_t e^{1.2\left(1 - \frac{N_t}{100}\right)}$$

	$r_{t+1} = r_t$	
To do this enter \Y1 = Xe^(1.2^(1-X)) \Y2 = X Xmin=0 Xmax=150		
and use ZoomFit to pare the equilibrium p	plot these functions. The graphs should intersect	at two points. These points
1.	What is first equilibrium point?	N* = 0
	What is $f'(N_*)$ (that is the slope) at this point?	3.32
	Is this point stable or unstable?	Unstable
2.	What is second equilibrium point?	100
	What is $f'(N_*)$ (that is the slope) at this point?	2
	Is this point stable or unstable?	Stayle
3. If $N_0 = 110$ then if	$N_1 =$	97.56
		100.46
	An estimate of N_{50}	2 100