Mathematics 739 Homework 4: Hodge Theory.

We first review some functional analysis. Let X and Y inner product spaces (we are not assuming that they are complete). Let $P: X \to Y$ be a linear map. Then a linear map $P^*: Y \to X$ is an **adjoint** to P if

$$\langle Px, y \rangle_Y = \langle x, P^*y \rangle_X$$

In what we have in mind here most of the operators will be differential operators and the adjoints are usual found by integration by parts. Here is an example. Let X = Y be the space of elements, f, of $C^{\infty}([0,1])$ with f(0) = f(1) = 0 with the usual L^2 norm. Let Pf = f' be the derivative of f. Then for any $g \in Y$ we have

$$\langle Pf, g \rangle = \int_0^1 f'(t)g(t) dt$$
$$= f(t)g(t)\Big|_0^1 - \int_0^1 fg'(t) dt$$
$$= -\int_0^1 fg'(t) dt$$

and in this case we have $P^*g = -g'$.

Here is the setup for a what might be thought of as "pre Hodge Theory". Let

$$A \xrightarrow{d_1} B \xrightarrow{d_2} C$$

be a sequence of inner product spaces and linear maps such that

$$d_2 \circ d_1 = 0.$$

Then we have the cohomology group

$$H = \ker(d_2)/d_1[A_1].$$

In general a cohomology class $[\alpha] \in H$ will have infinitely many elements. Our goal to so choose a single element of the class $[\alpha]$ in a canonical way. Since we are working with inner product spaces, choosing the element of a class that has shortest length is a natural idea.

So let $[\beta] \in H^2$ and assume that it has an element β_0 that has minimal length of all elements of the class $[\beta_0] = [\beta]$. Then for any $\alpha \in A$ and $t \in \mathbb{R}$ the element $\beta_0 + td_1\alpha$ is in the same cohomology class as β_0 and therefore

$$\|\beta_0 + t\alpha\|^2 = \langle \beta_0 + td_1\alpha, \beta_0 + td_1\alpha \rangle = \|\beta_0\|^2 + 2t\langle d_1\alpha, \beta_0 \rangle + t^2\|d_1\alpha\|^2$$

has a minimum at t=0. Therefore by the first derivative test

$$\langle d_1 \alpha, \beta_0 \rangle = \langle \alpha, d_1^* \beta_0 \rangle = 0.$$

As this holds for all $\alpha \in A$ this implies

$$d_1^* \beta_0 = 0.$$

Lemma 1. Let $\beta_0 \in B$ satisfy

(1)
$$d_2\beta_0 = 0 \quad and \quad d_1^*\beta_0 = 0.$$

Then β_0 is the unique element of its cohomology class $[\beta_0]$ of minimum norm.

Problem 1. Prove this. *Hint:* Every element of $[\beta_0]$ is of the form $\beta_0 + d_1 \alpha$ for some $\alpha \in A$. Use that $d_1^*\beta_0 = 0$ to show

$$\|\beta_0 + d_1\alpha\|^2 = \|\beta_0\|^2 + \|d_1^*\alpha\|^2 \ge \|\beta_0\|^2.$$

To show uniqueness assume that β_1 is in the same cohomology class and β_0 and also has minimum norm. Show that

$$\beta = \frac{1}{2}(\beta_0 + \beta_1)$$

is in the same cohomology class as β_0 and β_1 and if $\beta_0 \neq \beta_1$ it has smaller norm.

This shows that find finding an element of a cohomology $[\beta] \in H$ is equivalent to finding a β_0 in the class that satisfies the two equations of (1). It is possible to reduce these two equations to a single equation by introducing the **Hodge Laplacian**

$$\Delta := d_1 d_1^* + d_2^* d_2.$$

Lemma 2. With the notation of Lemma 1 for $\beta_0 \in B$ the two equations

$$d_2\beta_0 = 0$$
 and $d_1^*\beta_0 = 0$.

are equivalent to the equation

$$\Delta \beta_0 = 0.$$

Proof. Prove this. Hint: One way to start is by showing that

$$\langle \Delta \beta_0, \beta_0 \rangle = \|d_1^* \beta_0\|^2 + \|d_2 \beta_0\|^2.$$

To relate this to the de Rham cohomology $H_{\mathrm{dR}}^*(M)$ we need to make the spaces A^k into inner product spaces. The first step is to put an inner product on each tangent space to M. A **Riemannian metric** on a smooth manifold, M, is choice for each $x \in M$ of an inner product $g_x(\cdot, \cdot)$ on TM_x . That is $g_x(\cdot, \cdot): TM_x \times TM_x \to \mathbb{R}$ is a symmetric positive definite bilinear. Note if x^1, x^2, \ldots, x^n is a coordinate system on an open set U in M, then U has a Riemannian metric:

$$g = (dx^1)^2 + (dx^2)^2 + \dots + (dx^n)^2.$$

(This is the inner product that makes the coordinate vectors $\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}$ into an orthonormal basis.) This shows that every point of M has an open neighborhood that has a Riemannian metric.

Proposition 3. Every smooth manifold has a Riemannian metric.

Problem 2. Prove this. *Hint:* This is a special case of the meta theorem that any pointwise construction on vector spaces that is closed under convex combinations is can be defined on a manifold by use of a partition of unity. In this case we can find the Riemannian metric on M of the form $\sum_{\alpha \in A} \rho_{\alpha} g_{\alpha}$ where $\{\rho_{\alpha}\}_{\alpha \in A}$ is a partition of unity and each g_{α} is a Riemannian metric defined on some open subset U_{α} of M.

Let V be a n-dimensional real inner product space with a fixed orientation. finite dimensional real vector space with an inner product $\langle \, , \rangle$. Then each of the exterior powers $\wedge^k(V)$ also has a natural inner defined on decomposable by

$$\langle v_1 \wedge v_2 \wedge \cdots \wedge v_k, w_1 \wedge w_2 \wedge \cdots \wedge w_k \rangle = \det \left([\langle v, w_j \rangle]_{i,j=1}^k \right).$$

As dim V=n the space $\wedge^n(V)$ is one dimensional. Let e_1,e_2,\ldots,e_n be an oriented orthonormal basis of V and set $\omega=e_1\wedge e_2\wedge\cdots\wedge e_n$. This is independent of the choice of the oriented orthonormal bases used to define it. Let $1 \leq k \leq n-1$ and let $\beta \in \wedge^{n-k}(V)$. The if $\alpha \in \wedge^k(V)$ the product $\alpha \wedge \beta$ is in $\wedge^n(V)$ which is one dimensional. Therefore for some scalar $b(\alpha,\beta) \in \mathbb{R}$ we have

$$\alpha \wedge \beta = b(\alpha, \beta)\omega$$
.

It is clear that $b(\alpha, \beta)$ is linear function of each to its arguments. Thus for fixed β the map $\alpha \mapsto b(\alpha, \beta)$ is linear and $\bigwedge^k(V)$ is an inner product. But every linear functional on a finite dimensional vector space can be represented as an inner product with a vector. Thus there is a unique vector $\star \beta \in \bigwedge^k(V)$ such that

$$\alpha \wedge \beta = \langle \alpha, \star \beta \rangle \omega$$
.

The map $\beta \mapsto \star \beta$ is the **Hodge star** and is a linear map from $\wedge^{n-k}(V)$ to $\wedge^k(V)$. The equation above can be taken as the definition of $\star \beta$. We use the convention that $\wedge^0(V) = \mathbb{R}$ and $\star \colon \wedge^0(V) \to \wedge^n(V)$ and $\star \colon \wedge^n(V) \to \wedge^0(V)$ are given by

$$\star 1 = \omega, \qquad \star \omega = 1.$$

We now wish to compute $\star \star \alpha$. While one would think this is just a trivial chase through the definition, looking a some books and googleing and reading the question and answers on stack overflow has lead met to conclude that it is tricker than that. Here is a proof that use symmetry in a nice way.¹ Recall that if $A: V \to V$ is linear, then it defines a map $\bigwedge^k(A): \bigwedge^k(V) \to \bigwedge^k(V)$ by defining it on decomposable element as

$$\wedge^k(A)(v_1 \wedge v_2 \wedge \cdots \wedge v_k) = (Av_1) \wedge (Av_2) \wedge \cdots \wedge (Av_k)$$

Lemma 4. Let $A \in SO(V)$ (that is $A: V \to V$ is a linear map that preserves both the inner product and the orientation). Then A commutes with \star in the sense that

$$\star \wedge^{n-w}(A) = \wedge^k(A) \star.$$

¹I took the basic idea used here is from the notes *The Hodge Stat Operator* by Rich Schartz on his web page https://www.math.brown.edu/~res/M114/

Problem 3. Prove this by verifying the following calculation. (This does involve knowing a bit of multi-linear algebra.)

$$\langle \alpha, \star \wedge^{n-k}(A)\beta \rangle \omega = \alpha \wedge (\wedge^{n-k}(A)\beta)$$

$$= \wedge^{n}(A^{-1}) \left(\alpha \wedge (\wedge^{n-k}(A)\beta) \right) \quad (\text{as } \det(A^{-1}) = 1)$$

$$= \left(\wedge^{k}(A^{-1})\alpha \right) \wedge \beta$$

$$= \langle \wedge^{k}(A^{-1})\alpha, \star \beta \rangle \omega$$

$$= \langle \alpha, \wedge^{k}(A) \star \beta \rangle \omega \quad (\text{in } SO \text{ transpose} = \text{inverse})$$

This holds for all $\alpha \in \bigwedge^k(V)$ and therefore $\star \bigwedge^{n-k}(A)\beta = \bigwedge^k(A) \star \beta$

Lemma 5. Let $P: \wedge^k(V) \to \wedge^k(V)$ be a linear map that commutes with $\wedge^k(A)$ for all $A \in SO(V)$. Then $P = \lambda I$ for some real number λ .

Problem 4. Prove this. *Hint:* This is a standard fact from representation theory. \Box

Proposition 6. On $\wedge^{n-k}(V)$ the Hodge star satisfies $\star \star \beta = (-1)^{k(n-k)}\beta$.

Problem 5. Prove this. *Hint*: Define $P: \wedge^{n-k}(V) \to \wedge^{n-k}(V)$ by $P\beta := \star \star \beta$. By Lemma 4 we have that $P \wedge^{n-k}(A) = P \wedge^{n-k}(A)$ for all $A \in SO(V)$. Then by Lemma 5 we have $P = \lambda I$ for for λ . To compute λ show that if e_1, \ldots, e_n is a an oriented orthonormal normal basis of V, then

$$\star \star e_{k+1} \wedge e_{k+2} \wedge \cdots \wedge e_n = (-1)^{k(n-k)} e_{k+1} \wedge e_{k+2} \wedge \cdots \wedge e_n$$
 and thus $\lambda = (-1)^{k(n-k)}$. \square

Let (M,g) be a oriented Riemannian. That is M is a smooth manifold with an orientation and g is a smooth Riemannian metric on M. Then each cotangent space $T^*(M)_x$ is an inner product space (the inner product on $T(M)_x$ determines an inner product on $T^*(M)_x$) and so we can more our definition of the Hodge star to forms on (M,g). Therefore if $\alpha \in A^k(M)$ is a smooth k form on M, then $\star \alpha$ is a smooth (n-k)-form. And $\star 1 = \omega$ is the volume form on M.

Problem 6. As practice in working with these definitions show that on \mathbb{R}^2 with the standard flat metric $g = (dx)^2 + (dy)^2$ and the usual orientation that

$$\star 1 = dx \wedge dy$$

$$\star dx = dy$$

$$\star dy = -dx$$

$$\star (dx \wedge dy) = 1.$$

Problem 7. For the flat metric $(dx)^2 + (dy)^2 + (dz)^2$ on \mathbb{R}^3 with its usual orientation show

$$\star 1 = dx \wedge dy \wedge dz$$

$$\star dx = dy \wedge dz$$

$$\star dy = -dx \wedge dz$$

$$\star dz = dx \wedge dy$$

$$\star (dx \wedge dy) = dz$$

$$\star (dx \wedge dz) = -dy$$

$$\star (dy \wedge dz) = dx$$

$$\star (dx \wedge dy \wedge dz) = 1.$$

Proposition 7. The adjoint of the exterior derivative $d: A^k(M) \to A^{k+1}(M)$ is

$$d^* = (-1)^{(k+1)(n-k)} \star d \star .$$

Problem 8. Prove this by checking to see if I have the signs correct in the following calculation, which uses Stokes' Theorem and integration by parts. Let $\alpha \in A^k(M)$ and $\beta \in A^{k+1}(M)$.

$$\langle \alpha, d^*\beta \rangle_{L^2} = \langle d\alpha, \beta \rangle_{L^2}$$

$$= \int_M \langle d\alpha, \beta \rangle \omega$$

$$= (-1)^{(k+1)(n-k-1)} \int_M \langle d\alpha, \star \star \beta \rangle \omega$$

$$= (-1)^{(k+1)(n-k-1)} \int_M d\alpha \wedge \star \beta$$

$$= (-1)^{(k+1)(n-k-1)} \int_M \left(d(\alpha \wedge \star \beta) - (-1)^k \alpha \wedge d(\star \beta) \right)$$

$$= (-1)^{(k+1)(n-k-1)} (-1)^{k+1} \int_M \alpha \wedge d(\star \beta)$$

$$= (-1)^{(k+1)(n-k)} \int_M \langle \alpha, \star d(\star \beta) \rangle \omega$$

$$= \langle \alpha, (-1)^{(k+1)(n-k)} \star d(\star \beta) \rangle_{L^2}$$

as required.

In the last proposition we have computed d^* with domain $A^{k+1}(M)$. In comparing with other sources it is nice to have it with domain $A^k(M)$, which is just done by replacing k by k-1.

Corollary 8. The adjoint of
$$d: A^{k-1}(M) \to A^k(M)$$
 is
$$d^* = (-1)^{n(n-k)+1} \star d\star$$

The following is the main result of Hodge Theory for smooth compact Riemannian manifolds.

Theorem 9 (The Hodge Theorem). Let (M, g) be a smooth compact oriented Riemannian manifold. Then each each de Rham cohomology $[\alpha] \in H^*(M)$ contains a unique harmonic form α_0 . That is there is a unique form $\alpha_0 \in [\alpha]$ with

$$\Delta \alpha_0 = (d^*d + dd^*)\alpha_0 = 0.$$

Since M (so that we can integrate by parts and get $\langle \Delta \alpha_0, \alpha_0 \rangle_{L^2} = \|d\alpha_0\|_{L^2}^2 + \|d^*\alpha_0\|_{L^2}^2$) being harmonic is equivalent to the two equations

$$d\alpha_0 = 0$$
 and $d \star \alpha_0 = 0$.

One application of this is Poincaré duality for de Rham cohomology.

Theorem 10. Let M be a smooth oriented manifold of dimension n. Then for $0 \le k \le n$ the pairing $b(\cdot, \cdot) : H^k_{\mathrm{dR}}(M) \times H^{n-k}_{\mathrm{dR}}(M) \to \mathbb{R}$ given by

$$b([\alpha], [\beta]) = \int_{M} \alpha \wedge \beta$$

is nondegenerate.

Problem 9. Prove this. *Hint:* First show that definition of $b([\alpha], [\beta])$ is independent of the choice of the forms representing the classes. Saying that the bilinear form $b(\cdot, \cdot)$ is nondegenerate is saying that if for all $[\beta] \in H^{n-k}_{dR}(M)$ we have $b([\alpha], [\beta]) = 0$, then $[\alpha] = 0$. (And likewise with the roles of $[\alpha]$ and $[\beta]$ interchanged.)

To prove nondegeneracy choose any smooth Riemannian metric g on M and let \star be the Hodge star of this metric. Let $[\alpha] \in H^k_{\mathrm{dR}}(M)$ be a nonzero cohomology class. Let α_0 be the harmonic form in this class. Then $\star \alpha_0$ is also a harmonic form and $[\star \alpha_0] \in H^{n-k}_{\mathrm{dR}}(M)$. Then

$$b([\alpha_0], [\star \alpha_0]) = \int_M \alpha_0 \wedge \star \alpha_0 = \int_M \langle \alpha_0, \alpha_0 \rangle \omega = \int_M \|\alpha_0\|^2 \omega > 0.$$

Use this to show the nondegeneracy.

Let us loot at an example. Let v_1 and v_2 be linearly independent vectors in \mathbb{R}^n . Let

$$\mathcal{L} = \mathbb{Z}v_1 \oplus \mathbb{Z}v_2$$

be the integral lattice generated by these vectors and let

$$M=\mathbb{R}^2/\mathcal{L}$$
.

Then the Riemannian metric

$$g = (dx)^2 + (dy)^2$$

is translation invariant and therefore it descends to a metric on M.

We first look at the 0-forms on M. These can be viewed as the functions $f: \mathbb{R}^2 \to \mathbb{R}$ that are periodic with respect to \mathcal{L} . That is for all $z \in \mathbb{R}^2$ and

j=1,2 we have $f(z+v_j)=f(z)$. If f is harmonic, then df=0 which implies that f is constant. Therefore the harmonic 0-forms on M are just the constants.

On M the one forms are of the form

$$\alpha = P dx + Q dy$$

where P and Q are functions that are periodic with respect to \mathcal{L} . Then

$$\star \alpha = P \, dy - Q \, dx.$$

For α to be harmonic we need

$$d\alpha = \left(-\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x}\right) dx \wedge dy = 0$$
$$d \star \alpha = \left(\frac{\partial Q}{\partial y} + \frac{\partial P}{\partial x}\right) dx \wedge dy = 0.$$

Together these imply

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{\partial Q}{\partial y} = 0$$

which implies that P and Q are constant.

Finally the 2 forms are of the form

$$\alpha = f dx \wedge dy$$

where f is periodic with respect to \mathcal{L} . If this is harmonic we have

$$0 = d \star f dx \wedge dy = d(f \star \omega) = (d(f 1) = df$$

and so f is constant.

Thus on $M = \mathbb{R}^2/\mathcal{L}$ the harmonic forms are just the constant coefficient forms. Thus $H_{\mathrm{dR}}^*(M)$ is just the algebra generated by dx and dy. That is

$$H_{\mathrm{dR}}^*(M) = \mathbb{R}[dx, dy].$$

Problem 10. Let v_1, v_2, v_3 be three linearly independent vectors in \mathbb{R}^3 and

$$\mathcal{L} = \mathbb{Z}v_1 \oplus \mathbb{Z}v_2 \oplus \mathbb{Z}v_3$$

the integral lattice they generate. Let

$$M = \mathbb{R}^3 / \mathcal{L}$$

and use the flat metric $(dx)^2 + (dy)^2 + (dz)^2$ on this manifold. Show that the harmonic forms on M are the constant coefficient forms on M and therefore

$$H_{\mathrm{dR}}^*(M) = \mathbb{R}[dx, dy, dz].$$

Problem 11. The last problem and example might lead you to conjecture that if α and β are harmonic forms on a smooth oriented Riemannian manifold (M,g) that $\alpha \wedge \beta$ is also harmonic and thus that the space of harmonic forms is an algebra with respect to the product \wedge . Here we give an example to show this is not true. Let M be a compact oriented manifold with $H^1_{\mathrm{dR}}(M) \neq 0$ and with nonzero Euler characteristic $\chi(M)$. An example

would be a genus g surface, M_g , with $g \ge 2$ (as $\chi(M) = 2 - 2g$). Let g be any smooth Riemannian metric on M and let α be a harmonic 1-form in a nonzero homology class of $H^1_{\mathrm{dR}}(M)$. Because $\chi(M) \ne 0$ the one form α must vanish at at least one point x_0 . (We will see a proof of this later in the term.) The form $\star \alpha$ is also harmonic. Show $\alpha \land \star \alpha$ is not harmonic. Hint: If $\dim(M) = n$, then $\alpha \land \star \alpha$ is an n-form on M. It vanishes at x_0 . But the only harmonic n-forms on M are constant multiples of the volume form ω and these do not vanish at any point.

To get a bit of practice in working with the cohomology groups, let us go back to a lattice \mathcal{L} in \mathbb{R}^2 . Assume that

$$\mathcal{L} = \mathbb{Z}v_1 \oplus \mathbb{Z}v_2.$$

Then for j = 1, 2 let $\gamma_j : [0, 1] \to M := \mathbb{R}^2 / \mathcal{L}$ be

$$\gamma_j(t) = \langle t v_j \rangle = \text{coset of } t v_j \text{ in } M = \mathbb{R}^2 / \mathcal{L}.$$

Since $v_j \in \mathcal{L}$ this is a closed curve in M and in fact the homology classes represented by γ_1 and γ_2 are a basis for the homology group $H_1(M,\mathbb{Z})$. Call a cohomology class $[\alpha] \in H^1_{\mathrm{dR}}(M)$ an *integral cohomology class* if and only if

$$\int_{\gamma} \alpha \in \mathbb{Z}$$

for all closed curves γ in M. Since γ_1 and γ_2 represent a basis for $H_1(M, \mathbb{Z})$ this is equivalent to

$$\int_{\gamma_1} \alpha, \quad \int_{\gamma_2} \alpha \in Z.$$

Problem 12. Let v_1 and v_2 be the vectors

$$v_1 = (v_{11}, v_{12}), \qquad v_2 = (v_{21}, v_{22}).$$

Assume these are linearly independent and let $\gamma_1, \gamma_2 \colon [0,1] \to M = \mathbb{R}^2/\mathcal{L}$ be as above. Show that

$$\int_{\gamma_1} dx = v_{11},$$

$$\int_{\gamma_2} dx = v_{21}$$

$$\int_{\gamma_1} dy = v_{12},$$

$$\int_{\gamma_2} dy = v_{22}$$

and use this to show that a basis for the integral cohomology in $H^1_{dR}(M)$ are the forms

$$\alpha = a_1 dx + a_2 dy$$
, $\beta = b_1 dx + b_2 dy$

where the numbers a_1 , a_2 , b_1 , and b_2 are given by