Mathematics 172

Quiz 36

key Name:

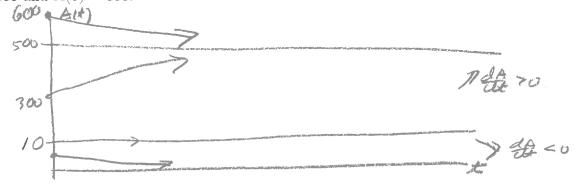
You must show your work to get full credit.

1. Water hyacinth is introduced into a pond. Let N(t) be the number of pounds of it in the pond t weeks after in is introduced. Assume that A satisfies

$$\frac{dA}{dt} = .12A(A - 10)(500 - A)$$

(a) What are the equilibrium points of this rate equation?

The equilibrium points are: 0, 0, 500 (b) Sketch a graph showing the equilibrium solutions and also the solutions with A(0) = 5, A(0) = 300 and A(0) = 600.



(c) Which of the equilibrium points are stable and which are unstable:

The stable points are: $O_1 500$

(d) For the solution with A(0) = 5 estimate A(85).

The unstable points are: /O to A(85). $A(85) \approx O$

(e) For the solution with A(0) = 300 estimate A(85).

 $A(85) \approx 500$

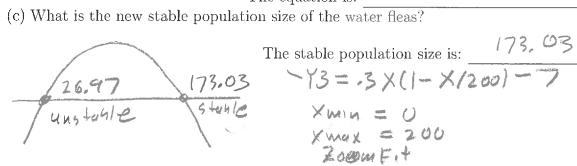
2. Water fleas are breading in a bucket. To start assume this population grows logistically with an intrinsic growth rate of r = .3 (fleas/week)/flea and a carrying capacity of K = 200.

(a) Let N(t) be the number of water fleas in the bucket in week t. What is the rate equation The equation is: $\frac{dV}{dt} = .3N(1 - \frac{N}{200})$ satisfied by N(t)?

(b) Assume that after the population of water fleas has reached its carrying capacity that a single mosquito is added to the bucket and it eats the water fleas at the constant rate of 7 fleas/week. What is the new rate equation satisfied by N(t)?

 $\frac{dN}{dt} = .3N(1 - \frac{N}{200}) - 7$ The equation is:

(c) What is the new stable population size of the water fleas?



3. A population of fish is living in a polluted lake. Due to the pollution the intrinsic growth rate of the population is r = -.08 (fish/year)/fish. At what rate should the lake be stocked to have a stable population size of 5,000 fish?

Let N = number of fish The stocking rate is: $\frac{400 \text{ fish}}{\text{year}}$ S = 5 + 0 cKing rateThen $S = \frac{608}{5000} = \frac{608}{5000}$

4. A new building for student housing is invaded by 5 cockroaches. Assume that with no constraints the roach population doubles every week. Then how long until there are a billion roaches?

The number of Rosens Time to 1,000,000,000 roaches. 27.575 weeks of ter t weeks is $N(t) = 5(2)^{t}$ $90 \text{ solve } 5(2)^{t} = 10^{9}$ $2^{t} = 10^{9}$ $2^{t} = 10^{9}$

5. Assume that P'(t) = .15P(t) and P(0) = 42.

(a) Give a formula for P(t).

Put f(t) = f(t) = f(t).

 $P(t) = \underline{42e^{-15}}$

(b) What is the doubling time of P(t)?

Doubling time is 4.62

Solve $42e^{15} \pm 2(42)$ $e^{15} \pm 2$ $10 \pm 2u(2)$ $10 \pm 2u(2)$ $10 \pm 2u(2)$ **6.** Assume that 15 rabbits are released on a island that has no rabbits. Assume that this population grows exponentially and that a survey 3 years later finds there are 50 rabbits.

(a) Give a formula for the number, N(t), of rabbits after t years. $N(t) = N(0) \nearrow^{\pm} = 15 \nearrow^{\pm} \qquad N(t) = 5 (1.499)$

$$N(3) = N(0) \lambda^{2} = 15 \lambda^{3}$$

$$N(3) = 15 \lambda^{3} = 50$$

$$\lambda^{3} = \frac{50}{15}$$

(b) What is the per capita growth rate of the rabbits?

(c) Can this exponential growth hold indefinitely? Why?

7. A population grows according to the discrete logistic equation

$$N_{t+1} = N_t + .3N_t \left(1 - \frac{N_t}{200}\right)$$
 and $N_0 = 150$.

(a) Find the following

Find the following
$$N_1 = 161.25$$
 $N_2 = 170.62$ $N_3 = 178.19$ $N_3 = 178.19$ Use 2nd cute value.

$$N_2 = 170.62$$

$$N_3 = 178.14$$

(b) What is the carrying capacity?

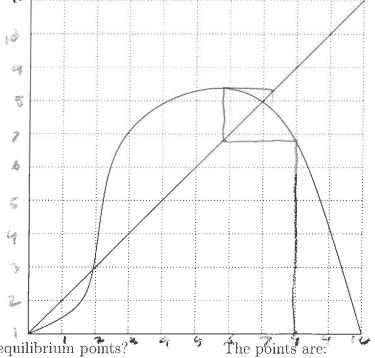
(c) Estimate the following

$$N_{50}=$$
 200

$$N_{51} = 200$$

$$N_{123}=$$
 200

8. The following graph is $N_{t+1} = f(N_t)$. The scale is 0 to 10 on each axis.



- (a) What are the equilibrium points?

- (b) Which of these points are stable?
- Stable points are:
- (c) If $N_0 = 8$ estimate the following

$$N_1 \approx \underline{\qquad 5.8}$$

$$N_2 \approx 7.3$$

$$N_{100}pprox$$