Mathematics 555 Homework

1. Continuous functions.

1.1. Uniformly continuous functions.

Definition 1. Let $f: E \to E'$ be a function between metric spaces. Then f is **uniformly** continuous if and only if for all $\varepsilon > 0$ there is a $\delta > 0$ such that for all $p, q \in E$,

$$d(p,q) < \delta$$
 implies $d(f(p), f(q)) < \varepsilon$.

Recall that a function $f \colon E \to E'$ between is Lipschitz if and only if there is a constant $C \ge 0$ such that $d(f(p), f(q)) \le Cd(p, q)$ for all $p, q \in E$. Last term we saw several examples of Lipschitz functions.

Problem 1. Show that every Lipschitz function is uniformly continuous. \Box

Proposition 2. Every uniformly continuous function is continuous.

Problem 3. Let $f: \mathbb{R} \to \mathbb{R}$ be the function given by $f(x) = x^2$. Show that f is not uniformly continuous. *Hint:* Towards a contradiction assume that f is uniformly continuous. Let $\varepsilon = 1$, then there is a $\delta > 0$ such that for all $x, y \in \mathbb{R}$

$$|x - y| < \delta$$
 implies $|f(x) - f(y)| = |x^2 - y^2| = |x + y||x - y| < 1$.

Show this leads to a contradiction.

Problem 4. Let $f:(0,1)\to\mathbb{R}$ be the continuous function

$$f(x) = \frac{1}{x}.$$

Show that f is not uniformly continuous.

Problem 5. On let $f:[0,1]\to\mathbb{R}$ be the functions

$$f(x) = \sqrt{x}$$
.

Prove directly from the definition that f is uniformly continuous.

Here is a bit of review in using the triangle inequality in metric spaces. If E is a metric space and $y_0, y_1, y_2 \in E$, then

$$d(y_0, y_2) \le d(y_0, y_1) + d(y_1, y_2).$$

If $y_0, y_1, y_2, y_3 \in E$, then

$$d(y_0, y_3) \le d(y_0, y_2) + d(y_2, y_3) \le d(y_0, y_1) + d(y_1, y_2) + d(y_2, y_3).$$

And by now you may have guessed the pattern which is given by the following:

Proposition 3. Let E be a metric space and $y_0, y_1, \ldots, y_n \in E$. Then

$$d(y_0, y_1) \le d(y_0, y_1) + d(y_1, y_2) + \dots + d(y_{n-1}, y_n)$$
$$= \sum_{j=1}^{n} d(y_j, y_{j-1}).$$

Problem 6. Prove this. *Hint:* Induction.

The following will let us use Proposition 3 to derive some properties of uniformly continuous function.

Definition 4. Let E be a metric space and $\delta > 0$ a positive real number. Then a finite sequence $x_0, x_1, \ldots, x_n \in E$ is a δ -sequence if and only if for each $j \in \{1, 2, \ldots, n\}$ the inequality $d(x_{j-1}, x_j) < \delta$.

Lemma 5. Let $f: E \to E'$ be a map between metric spaces and $\delta, \varepsilon > 0$. Assume that for all $p, q \in E$ that

$$d(p,q) < \delta$$
 implies $d(f(p), f(q))$.

Then for any δ -sequence $x_0, x_1, \ldots, x_n \in E$ in E we have

$$d(f(x_0), f(x_n)) \le n\varepsilon.$$

Problem 7. Prove this. Hint: Letting $y_i = f(x_i)$ in Lemma 3 we have

$$d(f(x_0), f(x_n)) \le \sum_{j=1}^n d(f(x_{j-1}), f(x_j)).$$

For the last lemma to be useful we need to be able to find some δ sequences. In \mathbb{R} , or more generally in \mathbb{R}^n this is easy.

Lemma 6. Let $p, q \in \mathbb{R}^n$ and $\delta > 0$. Let n be the unique positive integer with

$$n - 1 \le \frac{\|p - q\|}{\delta} < n$$

(this is the same as choosing n to be the smallest positive integer with $||p-q||/n < \delta$). For $0 \le j \ne n$ let

$$x_j = p + \frac{j}{n} \left(q - p \right).$$

Then x_0, x_1, \ldots, x_n is a δ -sequence with $x_0 = p$ and $x_n = q$.

Problem 8. In the case of n = 5 and $p, q \in \mathbb{R}^2$ draw the picture of what these points look like. Then prove the result in the general case.

Proposition 7. Let $f: \mathbb{R}^n \to \mathbb{R}$ be uniformly continuous. Show there are constants A, B > 0 such that

$$|F(x)| \le A + B||x||$$

for all $x \in \mathbb{R}^n$.

Problem 9. Prove this. *Hint*: Start by letting $\varepsilon = 1$ in the definition of uniform continuity. Then there is a δ such that

$$||p-q|| < \delta$$
 imlies $|f(p)-f(q)| < 1$.

Let $x \in \mathbb{R}^n$. By Lemma 6 there is a δ -sequence $x_0, x_1, \dots, x_n \in \mathbb{R}^n$ with $x_0 = 0$ and $x_n = x$ and

$$n - 1 \le \frac{\|x - 0\|}{\delta} < n.$$

Now use Lemma 5 to show

$$||f(x) - f(0)|| \le n$$

and then use this to show

$$|f(x)| \le |f(0)| + 1 + \frac{||x||}{\delta}$$

and explain why this completes the proof.

Problem 10. Use the previous problem to show that no polynomial of degree greater than 1 is uniformly continuous on \mathbb{R} .

1.2. Continuous functions on compact sets.

Theorem 8. Let $f: E \to E'$ be a map between metric spaces with E compact. Let $f: E \to E'$ be a continuous function. Then f is uniformly continuous.

Problem 11. Prove this. *Hint:* We use the open cover definition of compactness. Want to find a open open cover reduce to a finite subcover. Let $\varepsilon > 0$. As E is compact, for each $x \in E$ there a $\delta_x > 0$ such that for all $y \in E$

$$d(x,y) < \delta_x$$
 implies $d(f(x), f(y)) < \frac{\varepsilon}{2}$.

Then

$$\mathcal{U} = \{B(x, \delta_x/2) : x \in E\}$$

is an open cover of E. By compactness it has a finite subcover

$$U_0 = \{B(x_1, \delta_{x_1}/2), B(x_2, \delta_{x_2}/2, \dots, B(x_n, \delta_{x_n}/2)\}.$$

Let

$$\delta = \min_{1 \le j \le n} \frac{\delta_{x_j}}{2}.$$

The goal now is to show that for all $x, y \in E$

$$d(x,y) < \delta$$
 implies $d(f(x), f(y)) < \varepsilon$.

So let $x, y \in E$ with

$$d(x,y) < \delta$$
.

Then as \mathcal{U}_0 is a cover of E, there there is a $B(x_j, \delta_{x_j}/2)$ with $x \in B(x_j, \delta_{x_j}/2)$. (a) Show $y \in B(x_j, \delta_{x_j})$. (b) Use that $x, y \in B(x_j, \delta_j)$ to show

$$d(x_j, x) < \frac{\varepsilon}{2}$$
 and $d(x_j, y) < \frac{\varepsilon}{2}$.

(c) Now show

$$d(x,y) < \varepsilon$$

which completes the proof.

Note this implies that for any positive integer n that the function

$$f(x) = x^{1/n}$$

is uniformly continuous on [0,1]. Compare this with Problem 5 where I had to work as hard to do the special case as doing this general result.

1.3. Uniform convergence.

Definition 9. Let E and E' be metric spaces and $f, f_1, f_2, \dots : E \to E'$ functions. Then

(a) $\lim_{n\to\infty} f_n = f$ **pointwise** if and only if for all $x \in E$ we have

$$\lim_{n \to \infty} f_n(x) = f(x).$$

(b) $\lim_{n\to\infty} f_n = f$ uniformly if and only if for all $\varepsilon > 0$ there is a N such that

$$n \ge N$$
 implies $d(f_n(x), f(x)) < \varepsilon$.

To be explicit about the difference between the two modes of convergence, here is a restatement of each with all the dependencies made explicit.

Pointwise convergence: We have $\lim_{n\to\infty} f_n = f$ pointwise if and only if

$$\forall x \in E \ \forall \varepsilon > 0 \ \exists N_{x,\varepsilon} [n \ge N_{x,\varepsilon} \text{ implies } d(f_n(x), f(x)) < \varepsilon].$$

Uniform convergence: We have $\lim_{n\to\infty} f_n = f$ uniformly if and only if

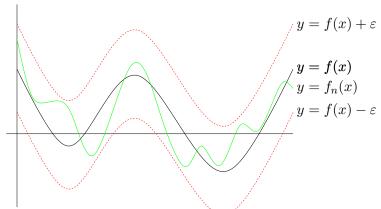
$$\forall \varepsilon > 0 \,\exists N_{\varepsilon} \,\forall x \in E \big[n \geq N_{\varepsilon} \text{ implies } d(f_n(x), f(x)) \big].$$

The following picture shows what this looks like in the case E is an interval.

In the case the functions $f, f_1, f_2, \dots : E \to \mathbb{R}$ (this the functions are real valued) then the condition that $|f_n(x) - f(x)| < \varepsilon$ is equivalent to

$$f(x) - \varepsilon < f_n(x) < f(x) + \varepsilon$$
 for all $x \in E$.

Here is the picture in the case where E is an interval.



The function $y = f_n(x)$ (green) is between the two graphs $y = f(x) - \varepsilon$ and $y = f(x) + \varepsilon$ (both in red).

Let us now look at an example where there is pointwise convergence, but no uniform convergence. This is a variant on the teepee example we did in class. Let $g \colon [0, \infty) \to \mathbb{R}$ be the function

$$g(x) = \frac{2x}{1+x^2}.$$

This function has a maximum at x = 1. One way to see this is to use the adding and subtracting trick to get

$$g(x) = 1 + g(x) - 1 = 1 + \frac{2x - 1 - x^2}{1 + x^2} = 1 - \frac{(x - 1)^2}{1 + x^2} \le 1.$$

And equality will only hold when x = 1. Let

$$f_n(x) = g(nx) = \frac{2nx}{1 + n^2x^2}.$$

Then

$$f_n(1/n) = g(n(1/n)) = g(1) = 1.$$

If x > 0 we have

$$0 \le f_n(x) = \frac{xn}{1 + (nx)^2} \le \frac{nx}{n^2 x^2} = \frac{1}{nx}$$

and so

$$\lim_{n \to \infty} f_n(x) = 0 \quad \text{for} \quad x > 0$$

But since $f_n(0) = 0$ for all x more generally have

$$\lim_{n \to \infty} f_n(x) = 0 \quad \text{for} \quad x \ge 0.$$

Therefore $\lim_{n\to\infty} f_n = 0$ pointwise on $[0,\infty)$. But the convergence is not uniform:

Problem 12. For this example show that the convergence is not uniform. *Hint:* Let $\varepsilon \leq 1$. Then show that for all N there is a $n \geq N$ and a x_n such that $f_n(x_n) = 1$ and thus $|f_n(x_n) - 0| \not< \varepsilon$.

Problem 13. This problem is important as it gives an example of what can go wrong when the convergence of a sequence of functions is not uniform. Let

$$g(x) = \frac{x^2}{1 + x^2}$$

and set

$$f_n(x) = g(nx)$$

and let

$$f(x) = \begin{cases} 0, & x = 0; \\ 1, & x \neq 0. \end{cases}$$

(a) Show that for all $x \in \mathbb{R}$

$$\lim_{n \to \infty} f_n(x) = f(x).$$

(b) Let $x_m = 1/m$. Show that for each n that

$$\lim_{m \to \infty} f_n(x_m) = 0.$$

(c) Show

$$\lim_{n \to \infty} \lim_{m \to \infty} f_n(x_m) = 0.$$

(d) Show

$$\lim_{m \to \infty} \lim_{n \to \infty} f_n(x_m) = 1.$$

1.4. Uniform limits of continuous functions.

Theorem 10. Let $f, f_1, f_2, \dots : E \to E'$ be maps between metric spaces. Assume that each of the f_n 's is continuous and that

$$\lim_{n \to \infty} f_n = f \quad uniformly.$$

Then f is also continuous. (This is open restated by saying "The uniform limit of continuous functions is continuous".)

Problem 14. Prove this. *Hint*: Let $\varepsilon > 0$ and let $p \in E$. You need to show that there is a $\delta > 0$ such that $d(p,q) < \delta$ implies $d(f(p), f(q)) < \varepsilon$.

So let $\varepsilon > 0$. Then, using that $f_n \to f$ uniformly, there is a N > 0 such that for all $x \in E$

$$n \ge N$$
 implies $d(f_n(x), f(x)) < \frac{\varepsilon}{3}$.

Choose any $n_0 \geq N$. Then f_{n_0} is continuous at p and therefore there is a $\delta > 0$ such that

$$d(p,q) < \delta$$
 implies $d(f_{n_0}(p), f_{n_0}(q)) < \frac{\varepsilon}{3}$.

Now use the triangle inequality to put these pieces together and complete the proof. $\hfill\Box$

We now show that the pathology of Problem 14 does not occur when the limit function is the uniform limit of continuous functions.

Theorem 11. Let $f, f_1, f_2, \dots : E \to E'$ be maps between metric spaces. Assume that each of the f_k 's is continuous and that

$$\lim_{k \to \infty} f_k = f \quad uniformly.$$

Let $\langle p_m \rangle_{m=1}^{\infty}$ be a sequence in E with

$$\lim_{m\to\infty}p_m=p.$$

Then

$$\lim_{m \to \infty} \lim_{n \to \infty} f_n(p_m) = \lim_{n \to \infty} \lim_{n \to \infty} f_n(p_m) = f(p).$$

Problem 15. Prove this.