Mathematics 551 Take Home part of Test 1.

This is due at the beginning of class on Wednesday, February 12.

Problem 1. (20 points) We have shown that if $\mathcal{L}(p,\theta)$ is the line

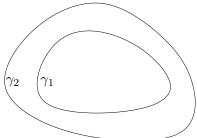
$$\mathcal{L}(p,\theta) = \{(x,y) : x\cos(\theta) + y\sin(\theta) = p\}$$

then for any C^1 curve γ that **Crofton's Fromula**

$$L(\gamma) = \frac{1}{2} \int_0^{2\pi} \int_{-\infty}^{\infty} \#(\gamma \cap \mathcal{L}(p, \theta)) \, dp \, d\theta$$

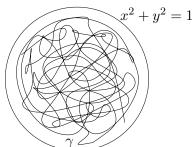
where $L(\gamma)$ is the length of γ .

(a) Let γ_1 and γ_2 be convex curves with γ_1 surrounded by γ_2 as in this figure:



Prove $L(\gamma_1) < L(\gamma_2)$.

(b) Let γ be a curve of length 1,000 that is contained inside of the unit circle $x^2 + y^2 = 1$:



Show there is a line that intersects γ at least 160 times.

Hint:
$$1000/(2\pi) = 159.1549...$$

Problem 2. (20 points) Let $\mathbf{c} : [a,b] \to \mathbb{R}^2$ be a unit speed curve and assume the curvature satisfies $\kappa(s) > 0$. Let r > 0 and \mathbf{t} and \mathbf{n} be the unit tangent and unit normal to \mathbf{c} . Then the **parallel curve** at distance r from \mathbf{c} is the curve

$$\mathbf{c}_r = \mathbf{c}(s) - r\mathbf{n}(s).$$

(a) If the original curve \mathbf{c} is a circle of radius R traversed so that the curvature is positive, draw picture and explain why \mathbf{c}_r is the circle with radius R+r. (This explains why it is natural to use the negative in the definition of \mathbf{c}_r .)

(b) Show

$$\frac{d\mathbf{c}_r}{ds} = \mathbf{c}_r'(s) = (1 + r\kappa(s))\mathbf{t}(s)$$

and use this to explain why the unit tangent and normal to \mathbf{c}_r are just $\mathbf{t}(s)$ and $\mathbf{n}(s)$. Draw a picture to illustrate this.

(c) Use Part (b) to show that length of \mathbf{c}_r is

$$L(\mathbf{c}_r) = L(\mathbf{c}) + r \int_a^b \kappa(s) \, ds.$$

(d) Compute the curvature of \mathbf{c}_r . Hint: We know the unit tangent and normal to \mathbf{c}_r . Let σ be arclength along \mathbf{c}_r . Then

$$\frac{d\sigma}{ds} = \|\mathbf{c}_r'(s)\| = (1 + r\kappa(s)).$$

Things you should know for the in class part of the test.

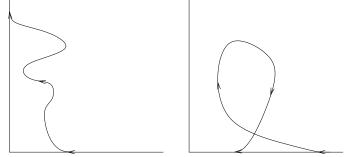
- (1) The basic definitions and formulas for things such as length, velocity, speed, and curvature.
- (2) You definitely need to know the Frenet formulas.
- (3) Be able to use that curvature is

$$\kappa = \frac{d\theta}{ds}$$

which implies that for a unit speed curve

$$\int_{a}^{b} \kappa(s) \, ds = \int_{a}^{b} \frac{d\theta}{ds} \, ds = \theta(b) - \theta(a).$$

This allows one to be able to compute integrals of curvature by just seeing how much that tangent has rotated. For example



In the first curve above θ changes form π to $\pi/2$ and so for this curve $\int \kappa(s) ds = -\pi/2$. For the second curve the tangent goes through one resolution in the negative direction and so for this curve $\int \kappa(s) ds = -2\pi$.

(4) Know that statement of the isoperimetric inequality $4\pi A \leq L^2$.

(5) Know the statement of the maximum principle. A reasonable question would be to outline a proof of the four vertex therm using the maximum principle.