Mathematics 551 Homework, March 7, 2020

Problem 1. In this problem you will derive some standard formulas for the first and second fundamental forms of graphs. Let $U \subseteq \mathbb{R}^2$ be an open set and let $f: U \to \mathbb{R}$ be a smooth function. Define a $\mathbf{x}: U \to \mathbb{R}^3$ by

$$\mathbf{x}(u,v) = (u,v,f(u,v)).$$

Let M be the surface parameterized by this function \mathbf{x} . That is M is the graph of the function z = f(x, y).

(a) Show

$$\mathbf{x}_u = (1, 0, f_u)$$

$$\mathbf{x}_v = (0, 1, f_v)$$

(b) Show that the first fundamental form is

$$I = (1 + f_u^2) du^2 + 2f_u f_v du dv + (1 + f_v^2) dv^2.$$

(c) Show the unit normal is

$$\mathbf{n}(u,v) = (1 + f_u^2 + f_v^2)^{-1/2} (-f_u, -f_v, 1).$$

(d) Find the second fundamental form of x.

Problem 2. In the last problem let us consider the special case were

$$f(0,0) = f_u(0,0) = f_v(0,0) = 0$$

and let M be the surface which is the graph of z = f(x, y). Then the graph will be tangent to the x-y plane at the origin. Assume

$$f_{uu}(0,0) = k_1$$

$$f_{uv}(0,0) = 0$$

$$f_{vv}(0,0) = k_2$$

where k_1 and k_2 are constants. As in the previous problem let

$$\mathbf{x}(u,v) = (u,v,f(u,v)).$$

(a) Show that the first and second fundamental forms of \mathbf{x} at the origin are

$$I_{(0,0,0)} = du^2 + dv^2$$

$$II_{(0,0,0)} = k_1 du^2 + k_2 dv^2$$

and that the normal at the origin is

$$\mathbf{n}(0,0) = (0,0,1).$$

(This should follow at once from Problem 1.)

(b) Show that at the origin the shape operator $S = S_{(0,0,0)}$ satisfies satisfies

$$S\mathbf{x}_{u}(0,0) = k_{1}\mathbf{x}(u,v), \qquad S\mathbf{x}_{v}(0,0) = k_{2}\mathbf{x}_{v}(0,0).$$

Thus k_1 and k_2 are the eigenvalues of S.

(c) One way to understand how a surface is curved is to intersect it with planes and look at the curvature of the resulting curve. Let us look at an example of this. Let \mathcal{P}_{θ} be the plane spanned by

$$E_1(\theta) = (\cos(\theta), \sin(\theta), 0), \qquad E_3 = (0, 0, 1) = \mathbf{n}(0, 0).$$

Show that the curve of intersection $\mathcal{P}_{\theta} \cap M$ is parameterized by

$$\gamma(t) = (t\cos(\theta), t\sin(\theta), f(t\cos(\theta), t\sin(\theta)))$$

= $tE_1(\theta) + f(t\cos(\theta), t\sin(\theta))E_3$.

Show that the curvature of this curve (viewed as a curve in \mathcal{P}_{θ}) at the origin is

$$\kappa(0) = k_1 \cos^2(\theta) + k_2 \sin^2(\theta).$$

This is theorem due to Euler.

Now let us look at the example of a sphere of radius R centered at the origin. Call this sphere $S^2(R)$. Let $U \subseteq \mathbb{R}^2$ be an open set and $\mathbf{x} \colon U \to S^2(R)$ be a local parameterization of $S^2(R)$. Then

$$\mathbf{x}(u,v) \cdot \mathbf{x}(u,v) = R^2$$

for all $(u, v) \in U$. Taking the derivatives gives

$$2\mathbf{x}_u \cdot \mathbf{x} = 0, \qquad 2\mathbf{x}_v \cdot \mathbf{x} = 0.$$

Therefore \mathbf{x} is a normal to the surface and so the unit normal will be one of

$$\frac{1}{R}\mathbf{x}$$
 or $-\frac{1}{R}\mathbf{x}$.

We assume that our set up is so that

$$\mathbf{n}(u,v) = -\frac{1}{R}\mathbf{x}.$$

Problem 3. Recall that the shape operator, S, is the linear map on tangent spaces to the surface defined by

$$S(\mathbf{x}_u) = -D_{\mathbf{x}_u}\mathbf{n}(u, v), \qquad S(\mathbf{x}_v) = -D_{\mathbf{x}_v}\mathbf{n}(u, v).$$

Or to be a bit more concrete (by unscrambling the definition of the directional derivative $D_{\mathbf{x}_n}$) this is the same as

$$S(\mathbf{x}_u) = -\frac{\partial \mathbf{n}}{\partial u}, \qquad S(\mathbf{x}_v) = -\frac{\partial \mathbf{n}}{\partial v}.$$

Since S is linear knowing what it does to the basis is enough determine what it does to arbitrary vectors. Now back to the example of the sphere of radius R centered at the origin where

$$\mathbf{n} = -\frac{1}{R}\mathbf{x}.$$

Show that in this case the shape operator satisfies

$$S(\mathbf{x}_u) = \frac{1}{R}\mathbf{x}_u, \qquad S(\mathbf{x}_v) = \frac{1}{R}\mathbf{x}_v$$

and therefore on the sphere the shape operator is given by

$$S = \frac{1}{R}I$$

where I is the identity map.

Thus you have proven:

Proposition 1. On the sphere of radius R the shape operator with respect to the inward unit normal is S = (1/R)I where I is the identity map. \square

This has a converse:

Theorem 2. Let $\mathbf{x}: U \to \mathbb{R}^3$ be a C^2 map on the connected open subset U of \mathbb{R}^2 . Assume that the shape operator of \mathbf{x} is

$$S = kI$$

where $k \neq 0$ is a constant. Then **x** lies in a sphere of radius R = 1/|k|.

Problem 4. Prove this. *Hint*: Let $\mathbf{c}(u, v)$ be

$$\mathbf{c}(u,v) = \mathbf{x}(u,v) + \frac{1}{k}\mathbf{n}(u,v).$$

Use that $S(\mathbf{x}_u) = \frac{1}{k}\mathbf{x}_u$ and $S(\mathbf{x}_v) = \frac{1}{k}\mathbf{x}_v$ to show $\mathbf{c}_u = \mathbf{c}_u = \mathbf{0}$ and therefore \mathbf{c} is constant.

Problem 5. Let $S^2(R)$ be the sphere of radius R and let U be an open subset of \mathbb{R}^2 . If R is the radius of the earth explain why a cartographer would like to find a map $\mathbf{x} \colon U \to S^2(R)$ and a constant c such that the first fundamental from of \mathbf{x} is

$$I = c^2(du^2 + dv^2).$$

Hint: Think of U as a map where each point (u,v) corresponds to the point $\mathbf{x}(u,v)$ on $S^2(R)$, which we think of as the surface of the earth. Let $\boldsymbol{\alpha} \to [a,b]$: U be a C^1 curve on the map such that $\boldsymbol{\gamma}(t) = \mathbf{x}(\boldsymbol{\alpha}(t))$ moves over a road, say I-26 between Columbia and Charleston. If $I = c^2(du^2 + dv^2)$ show

Length(
$$\gamma$$
) = c Length(α).

What does this say about the relation of distances on the map and corresponding distance on the surface of the earth? \Box

Problem 6 (Optional). Show that it is impossible to find a map $\mathbf{x} \colon U \to S^2(R)$ as in the previous problem. We will soon show a general result that shows this, but it is interesting to try doing it with bare hands. *Hint*: The idea is to start taking derivatives with respect to u and v of $\mathbf{x} \cdot \mathbf{x} = R^2$ until you get a contradiction.

Problem 7. Let $\mathbf{x}: U \to \mathbb{R}^3$ be a C^2 where U is an open set in \mathbb{R}^2 such that the first fundamental form of \mathbf{x} is

$$I = \rho(u, v)^2 (du^2 + dv^2)$$

for some function ρ . Show that \mathbf{x} preserves angles. More explicitly this means that if $\mathbf{c}_1, \mathbf{c}_2(-\delta, \delta) \to U$ are curves with $\mathbf{c}_1(0) = \mathbf{c}_2(0)$ (that is they both go through the same point at time t = 0) and if $\gamma_1, \gamma_2 : (-\delta, \delta) \to \mathbb{R}^3$ are the curves

$$\gamma_j(t) = \mathbf{x}(\mathbf{c}_j(t))$$
 for $j = 1, 2$.

then

$$\not \exists (\boldsymbol{\gamma}_1'(0), \boldsymbol{\gamma}_2'(0)) = \not \exists (\mathbf{c}_1'(0), \mathbf{c}_2'(0)).$$