First collection of Final Problems in Math 552.

Send me the solutions to these problems by 5:00pm on Friday April 17. Use as the subject line

Subject: Problems 1 to 3, <your name>.

Your solution should be LATEX output. I will be happy to answer questions related to these question on Wednesday and Friday. And if you have LATEX questions you can e-mail be about them (use the word "LaTeX" in the subject line if you are doing this)

Recall that an *entire function* is a function $f: \mathbb{C} \to \mathbb{C}$ which is analytic at all points of \mathbb{C} . One of the more famous results in complex analysis is

Theorem 1 (Liousville's Theorem). A bounded entire function is constant. (To be explicit if f(z) is analytic and that is a constant M so that $|f(z)| \leq M$ for all $z \in \mathbb{C}$, then f(z) is constant.)

We can use this to prove what looks like a stronger statement. First a definition (and recall that $B(a,r) = \{z : |z-a| < r\}$ is the open disk of radius r around a).

Definition 2. A subset $S \subseteq \mathbb{C}$ is **dense** in \mathbb{C} if and only if for all $a \in \mathbb{C}$ and r > 0 the intersection $S \colon B(a,r) \neq \emptyset$. (Put differently, S is dense if and only if every open disk D(a,r) contains at least one point of S.)

Thus a dense set is large in the sense that it gets close to every point of \mathbb{C} .

Theorem 3. If f(z) is a non-constant entire function, then its range

$$f[\mathbb{C}] = \{ f(z) : z \in \mathbb{C} \}$$

is dense in \mathbb{C} .

Problem 1. Prove this. *Hint*: Towards a contradiction assume that this is false. Then there is a non-constant entire function f(z) and a disk B(a,r) such that the disk does not contain any point f(z). Now argue

- (a) This implies $|f(z) a| \ge r$ for all $z \in \mathbb{C}$.
- (b) Let

$$g(z) = \frac{1}{f(z) - a}$$

and explain why g(z) is an entire function.

- (c) Show that g(z) is bounded.
- (d) Finally use Liousville's Theorem to show that g(z) is constant and explain why this contradicts our assumption that f(z) is not constant.

We have recently proven:

Theorem 4. If f(z) has an isolated singularity at z = a and there is a C > 0 such that for some r > 0

$$|f(z)| \le D$$
 for all z with $0 < |z - a| < r$,

then the singularity is removable. (That is if a function is bounded near an isolated singularity, then the singularity is removable.) \Box

We now use this to prove

Theorem 5. Let f(z) have an isolated singularity at z = a and assume

$$\lim_{z \to a} |f(z)| = \infty.$$

Then f(z) has a pole at a. That is there is an analytic function $f_0(z)$ defined near a and a positive integer $m \ge 1$ such that

$$f(z) = \frac{f_0(z)}{(z-a)^m}$$

and $f_0(a) \neq 0$.

Problem 2. Prove this along the following lines. Let

$$g(z) = \frac{1}{f(z)}$$

(a) Explain why

$$\lim_{z \to a} g(z) = 0.$$

- (b) Explain why g(z) has an isolated singularity at z = a.
- (c) Show that g(z) is bounded near z = a and then explain why this implies that the singularity of g(z) is removable.
- (d) Then z = a is a zero of g(z), say it is a zero of order $m \ge 1$, so that

$$g(z) = (z - a)^m g_0(z)$$

where $g_0(z)$ is an analytic function with $g_0(a) \neq 0$ (you do not have to prove this about g). Show that this implies

$$f(z) = \frac{f_0(z)}{(z-a)^m}$$

where $f_0(z) = \frac{1}{g_0(z)}$ and why $f_0(z)$ satisfies the conclusion we require.

Essential singularities have a more spectacular property.

Theorem 6. Let z = a be an essential singularity of f(z). Then for any $\delta > 0$ the set

$$f[D(a,\delta)] = \{f(z) : 0 < |z - a| < \delta\}$$

is dense in \mathbb{C} .

Problem 3. Prove this. *Hint:* The most natural proof of this is very much like the proof of Theorem 3: Start by assuming, towards a contradiction, that the result is false, then there is disk B(b,r) such that $f[B(a,\delta)]$ does not intersect B(b,r). Use this to show that

$$g(z) = \frac{1}{f(z) - b}$$

has a removable singularity at z=a and this implies that the singularity of f(z) at z=a is either removable, or a pole, contradicting that z=a is an essential singularity.