Quiz 13

Name: /-e y

You must show your work to get full credit.

Proposition. For all real numbers a and b the inequality

$$2ab \le a^2 + b^2$$

holds.

Proof. By algebra

$$2ab \le a^2 + b^2$$

 $0 \le a^2 - 2ab + b^b$ (subtract $2ab$ from both sides)
 $0 \le (a - b)^2$ (factor)

and this last step is true because the square any real numbers is ≥ 0 .

1. This proof is poorly written. Rewrite to make it better. *Hint*: Note that by starting with $2ab \le a^2 + b^2$ the proof is pretty much starting with what it is trying to prove.

Since the square of any real number is
$$\frac{3}{2}$$
 or we have $0 \le (\alpha - b)^2$

$$0 \le \alpha^2 - 2ab + b^2 \qquad (expanding)$$

$$2ab \le \alpha^2 + b^2 \qquad add 2ab + b$$
hat hat fields

2. Prove: If $a^3 + a$ is irrational, then a is irrational.

We prove the continuous, time:

If a 15 national, then a 3+4 15 nation.

His same a 15 national. Then a = $\frac{1}{4}$ For integs p and q with $\frac{1}{4}$ Then $a^3 + a = (\frac{1}{4})^3 + (\frac{1}{4})$ where $p' = p^3 + pq^2$ and $q' = q^3$ are integers $= \frac{p^2}{63} + \frac{p}{6}$ $= \frac{p^3 + pq^2}{63}$ $= \frac{p^3 + pq^2}{63}$