Mathematics 300 Homework, March 5, 2022.

Our most recent results are

Division Algorithm. If a and b are integers with b > 0, then there are unique integers q (the quotient) and r (the remainder) with

$$a = qb + r$$
 $0 \le r < b$.

Theorem 1. For any integers a and b and positive integer n $a \equiv b \pmod{n}$ if and only if a and b have the same remainder when divided by n.

Theorem 2. Let n be a positive integer. Then for all integers a, b, c

- (a) $a \equiv a \pmod{n}$ for all integers a. (The **reflective property**).
- (b) If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$ (The symmetric property).
- (c) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$ (The transitive property).

Theorem 3. Let n be a positive integer and a, b, c, d integers with

$$a \equiv b \pmod{n}$$
 and $c \equiv c \pmod{n}$.

Then

$$a + c \equiv b + d \pmod{n}$$
 and $ad \equiv bd \pmod{n}$.

Also for any positive integer m

$$a^m \equiv b^m \pmod{n}$$
.

Here is an example of how these results can simplify some of the proofs we have been doing.

Proposition. For any integer n the number $n^3 - n$ is divisible by 3.

Proof. The number $n^n - n$ is divisable by 3 if and only if $n^3 - n \equiv 3 \pmod{n}$. So we will show $n^3 - n \equiv 0 \pmod{3}$ for all n. There are three cases $n \equiv 0 \pmod{3}$, $n \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$.

Case 1: $n \equiv 0 \pmod{3}$. Then

$$n^3 - n \equiv 0^3 - 0 \tag{mod 3}$$

$$\equiv 0 \pmod{3}$$

Case 2: $n \equiv 1 \pmod{n}$. Then

$$n^3 - n \equiv 1^3 - 1 \tag{mod 3}$$

$$\equiv 0 \pmod{3}$$

Case 3: $n \equiv 2 \pmod{3}$. Then

$$n^3 - n \equiv 2^3 - 2 \tag{mod 3}$$

$$\equiv 6 \pmod{3}$$

$$\equiv 0 \pmod{3}$$

So in all cases $n^3 - n \equiv 0 \pmod{3}$ and therefore in all cases $3 \mid (n^3 - n)$. \square

Proposition. For all integers n the number $n^5 - n$ is divisible by 5.

Problem 1. Prove this by considering the cases $n \equiv 0 \pmod{5}$, $n \equiv 1 \pmod{5}$, $n \equiv 2 \pmod{5}$, $n \equiv 3 \pmod{5}$, $n \equiv 4 \pmod{5}$.

Problem 2. Show that when n^2 is divided by 3 the remainder is never 2. *Hint:* This is the same as showing that for all n that $n^2 \not\equiv 2 \pmod{3}$. Do this by looking at the cases $n \equiv 0 \pmod{3}$, $n \equiv 1 \pmod{3}$, $n \equiv 2 \pmod{3}$.

Problem 3. If an integer n is divided by 10, then the remainder is one of the numbers r = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

(a) Let n be an positive integer and let d_0 be its last digit (the ones place). Explain why $n \equiv d_0 \pmod{10}$ For example if n = 12,435, then

$$n = (1,243)10 + 5$$

which shows n is of the form 10q + r where r = 5. Thus the remainder when n is divided by 10 is 5 and therefore $n \equiv 5 \pmod{10}$.

(b) The squares (mod 10) are

$$0^2 \equiv 0 \pmod{10}$$
 $1^2 \equiv 1 \pmod{10}$
 $2^2 \equiv 4 \pmod{10}$
 $3^2 \equiv 9 \pmod{10}$
 $4^2 \equiv 6 \pmod{10}$
 $5^2 \equiv 5 \pmod{10}$
 $6^2 \equiv 6 \pmod{10}$
 $7^2 \equiv 9 \pmod{10}$
 $8^2 \equiv 4 \pmod{10}$
 $9^2 \equiv 1 \pmod{10}$

Use this to explain why every perfect square ends in a 0, 1, 4, 6 or 9.

(c) Explain why n = 14,876,204,123 is not a perfect square.

Problem 4. In the text in the problem set for Section 3.5 (Pages 153–157) do Problems 5,