Mathematics 300

\sim	•	-	0
()	\mathbf{uiz}		•
\sim	$\mathbf{u}_{\mathbf{I}}\mathbf{z}_{\mathbf{I}}$		v

Name:

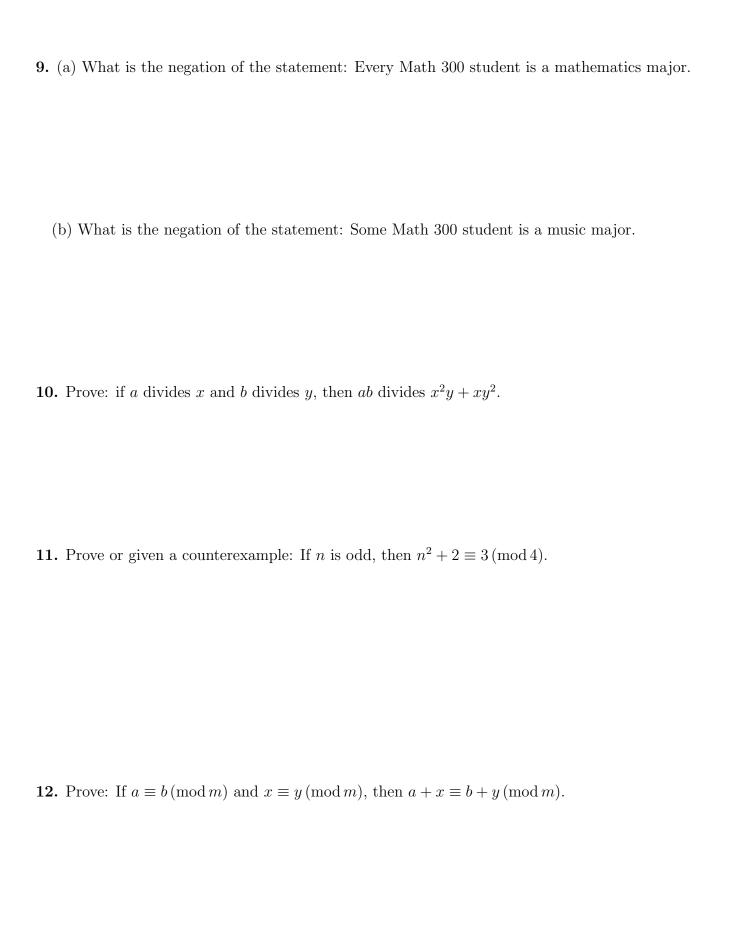
You must show your work to get full credit.

- 1. Define the following: (a) The integer n is even.
 - (b) The integer n is odd.
 - (c) The integer a **divides** the integer b (in symbols $a \mid b$).
 - (d) For integers a, b, n the a is **congruent to** b **modulo** n. (in symbols $a \equiv b \pmod{n}$.)
- 2. Prove or give a counterexample:
 - (a) The integer 0 is even.

(b) The integer 42 is even.

(c) If n is even, then n+1 is odd.

(d) If n is even, then n-6 is even.


3.	(a)	Define v	what it	means	for	a, b.	and	c to	be a	Pythogonian	triple.

(b) Find all Pythogonian triples of the form m, m + 1, and m + 2.

4. Make a truth table for $P \wedge Q \rightarrow P \vee Q$.

5. Use truth tables to explain why $P \to Q$ and $\neg Q \to \neg P$ are logially equivalent.

- **6.** For the statement $P \to Q$
 - (a) What is the converse?
 - (b) What is the negation?
 - (c) What is the contrapositive?
- 7. For the statement: If the weather is good, I will go hiking.
 - (a) What is the converse.
 - (b) What is the negatation.
 - (c) What is the contrapositive.
- **8.** (a) Write $\{x \in \mathbb{N} : (x-2)(x+5)(3x-7) = 0\}$ in roster notation.
 - (b) Write $\{x \in \mathbb{Z} : (x-2)(x+5)(3x-7) = 0\}$ in roster notation.
 - (c) Write $\{x \in \mathbb{R} : (x-2)(x+5)(3x-7) = 0\}$ in roster notation.

