Quiz 13

Name:

You must show your work to get full credit.

Proposition. For all real numbers a and b the inequality

$$2ab \le a^2 + b^2$$

holds.

Proof. By algebra

$$2ab \le a^2 + b^2$$

 $0 \le a^2 - 2ab + b^2$ (subtract $2ab$ from both sides)
 $0 \le (a - b)^2$ (factor)

and this last step is true because the square any real numbers is ≥ 0 .

1. This proof is poorly written. Rewrite to make it better. *Hint*: Note that by starting with $2ab \le a^2 + b^2$ the proof is pretty much starting with what it is trying to prove.

2. Prove: If $a^3 + a$ is irrational, then a is irrational.