\sim	•	0.1
()1	117	31
ve i	112	$\mathbf{o}_{\mathbf{T}}$

You must show your work to get full credit.

1. Use induction on a to prove the following special case of the **division algorithm**. If a and b are positive integers, there there are integers q and r with

$$a = qb + r$$
 with $0 \le r < b$.

(Note we are not proving the uniqueness of q and r.)

2. Let $A = \{1, 2, 3, 4, 5, 6\}$ and B be the set of even integers between -3 and 9.

Write B as the list of its elements.

What is $A \cup B$?

What is $A \cap B$?

What is A - B _____

3. Draw the Venn diagrams for (a) $A \cap B^c$

(b)
$$(A - B) \cup (B - A)$$

(c)
$$(A \cup B) - (A \cap B)$$
.

(d) Are
$$(A-B) \cup (B-A)$$
 and $(A \cup B) - (A \cap B)$ equal? Why?

4. Let a_n be defined recursively by

$$a_{n+1} = \frac{1}{2}a_n + 100, \qquad a_1 = 2$$

Prove that $a_n \leq 300$ for all n.

5. Define the *Fibonacci numbers* by the recursion

$$f_{n+2} = f_{n+1} + f_n, \qquad f_1 = 1, \quad f_2 = 1$$

(a) Compute

$$f_3 =$$
 _____ $f_4 =$ ____ $f_5 =$ ____ $f_6 =$ ____ $f_7 =$ _____

(b) Prove

$$\sum_{k=1}^{n} f_k = f_{k+2} - 1.$$

6. Give an example of two sets with $A \cap B \neq A \cup B$. The example should be explicitly given sets, not just a Venn diagram.

7. Use Venn diagrams to show for sets A, C and B that $(A \cup C) \cap B = (A \cap B) \cup (C \cap B)$

8. Let A_1, A_2, \ldots, A_n, B be subsets of a set U. Use induction to show $(A_1 \cup A_2 \cup \cdots \cup A_n) \cap B = (A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_n \cap B)$