You must show your work to get full credit.

1. Prove or give a counter example: Every even integer is the some of two odd integers.

2. Use Venn diagrams to show that $(A \cup B) - C = (A - C) \cup (B - C)$.

3. What is the quotient and reminder when -32 is divided by 7?

Quotient is _____

Remainder is _____

4. Find the sum $S = \sum_{k=0}^{10} 3(2)^k$.

5. Find the sum of the following twenty terms $31 + 32 + \cdots + 50$.

The sums is

6. What is wrong with the following statement of the division algorithm. "For unique integers a and b with b>0 there are integers q and r with

$$a = qb + r$$
 and $0 \le r < b$.

7. If chicken nuggets are only sold in boxes with two or three nuggets, show that it is possible to buy exactly n nuggets for any $n \ge 2$.

8. Use induction to show that $10^n \equiv 1 \pmod{9}$ for all integers $n \ge 1$.

a	Let	f	(x)		(r -	∟ 1`	e^x
9.	ьеь	./ \	(x)	=	x -	$\vdash I$	<i>je</i> .

(a) Compute the first four derivatives of f(x).

$$f'(x) = \underline{\hspace{1cm}}$$

$$f''(x) = \underline{\hspace{1cm}}$$

$$f'''(x) =$$

$$f^{(4)}(x) = \underline{\hspace{1cm}}$$

(b) Make a conjecture for a formula for the *n*-th derivative $f^{(n)}(x)$.

$$f^{(n)}(x) = \underline{\hspace{1cm}}$$

(c) Prove your conjecture.

10. Let a_n be defined by

$$a_{n+1} = 3a_n - 8, \qquad a_0 = 6$$

(a) Find the following

$$a_1 =$$

$$a_2 =$$

$$a_3 =$$

(b) Prove $a_n = 2(3^n) + 4$

11. (a) Define $a \equiv b \pmod{n}$.

(b) Prove that if a and b have the same remainder when divided by n that $a \equiv b \pmod{n}$.