\sim	•	0.4
()	\mathbf{uiz}	34
·	uız	\mathbf{v}

Name:

You must show your work to get full credit.

1. Let A be the set of all squares of odd integers and $B = \{x \in \mathbb{Z} : x \equiv 1 \pmod{4}\}.$

(a) List four elements of A.

(b) List four elements of B.

(c) Prove $A \subseteq B$.

(d) Prove $B \not\subseteq A$.

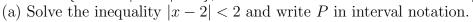
2. Let

$$A = \{6u - 4v : u, v \in \mathbb{Z}\}$$

B =Set of even integers.

(a) List four elements of A.

(b) List four elements of B.


Show A = B. This is done in two steps:

(c) Prove $A \subseteq B$.

(d) Prove $B \subseteq A$.

(e) Write the punch line.

3. Let $P = \{x \in \mathbb{R} : |x-2| < 1\}$, and let S be the closed interval S = [0, 5]. Prove $P \subseteq S$.

$$P =$$

(b) Show $P \subseteq S$.

- **4.** The **power set**, denoted by $\mathcal{P}(A)$ of a set A is the set whose elements are all the subsets of A.
 - (a) What is the power set of \emptyset ?

$$\mathcal{P}(\varnothing) = \underline{\hspace{1cm}}$$

(b) What is the power set of $\{1, 2, 3\}$?

$$\mathcal{P}(\{1,2,3\}) =$$

(c) What is $(\{1\})$?

$$\mathcal{P}(\mathcal{P}(\{1\})) = \underline{\hspace{1cm}}$$