Mathematics 554 Homework.

These problems will not be collected, but should prepare you for the test on Wednesday and hopefully at least a couple of them are interesting.

Problem 1. Let $f:[a,b]\to\mathbb{R}$ be a function such that for some constants M>0 and $\alpha>0$

$$|f(x_2) - f(x_1)| \le M|x_2 - x_1|^{\alpha}$$

for all $x_1, x_2 \in [a, b]$. (We say that f satisfies a **Hölder condition** of order α .) Show that if f satisfies a Hölder condition with $\alpha > 1$ that f'(x) = 0 for all $x \in (a, b)$ and thus f is constant. (If you do not want to work with a general α it is enough do the problem in the case where $\alpha = 3/2$.)

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ satisfy the differential equation

$$f'(x) = \frac{f(x)^2}{1 + f(x)^4}.$$

Show f is a monotone increasing function.

Problem 3. Let y satisfy the differential equation

$$y'(x) = \frac{x^2 - 1}{1 + x^2 y(x)^2}.$$

Show that y has a local maximum at x=-1 and a local minimum at x=1.

Problem 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with $|1 - f'(x)| < \rho$ where ρ is a constant with $\rho < 1$. Let g(x) = x - f(x).

- (a) Show f(x) = 0 if and only if g(x) = x.
- (b) Let r be a point where f(r) = 0, and thus $g(x_0) = x_0$. Use the Mean Value Theorem to show that for any x we have

$$|g(x) - r| = |g(x) - g(r)| < \rho |r|.$$

Hint: g' = x - f'.

(c) Let $x_0 \in \mathbb{R}$ and define a sequence by $x_1 = g(x_0)$, $x_2 = g(x_1)$ and in general $x_{n+1} = g(x_n)$. Show $\lim_{n \to \infty} x_n = r$.

Problem 5. Let $f: \mathbb{R} \to \mathbb{R}$ be four times differentiable with $f^{(4)}(x) > 0$ for all $x \in \mathbb{R}$. Assume that there is a point a with f'(a) = f''(a) = f'''(a) = 0. Show that f has a global minimum at x = a.

Problem 6. Let f and g be n times differentiable on (a, b) and let p = fg be the product of f and g. Note using the product rule it is not hard to see

$$p' = f'g + fg'$$

$$p'' = f''g + 2f'g' + fg''$$

$$p''' = f'''g + 3f''g' + 3f'g'' + g'''.$$

Guess a formula for the *n*-th derivative $p^{(n)}$ and prove it is correct.

Problem 7. Use that the derivative of sec is

$$\sec'(x) = \sec(x)\tan(x)$$

and that $1 + \tan^2(x) = \sec^2(x)$ to derive a formula for the derivative of $\operatorname{arcsec}(x)$.

Problem 8. Let $f, g: [a, b] \to \mathbb{R}$ be functions differentiable on (a, b), continuous on [a, b] and with f(a) = g(a) and f(b) = g(b). Show there is a point $\xi \in (a, b)$ with $f'(\xi) = g'(\xi)$.

Problem 9. Let f be twice differentiable on an interval containing a and assume f'' is continuous. Compute

$$\lim_{h\to 0}\frac{f(a+h)-2f(a)+f(a-h)}{h^2}$$