Quiz 18

Name:	Key
-------	-----

You must show your work to get full credit.

1.

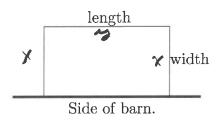


FIGURE 1. A pen against the side of a barn. The length is parallel to the side of the barn and the width is perpendicular to the barn.

A farmer wishes to build pen against the side of a barn as pictured. He has 100 feet of fencing. What length and width will maximize the area of the pen?

length =
$$50$$
 width = 25

Let $\chi = width$ $y = length$

Then $2\gamma + y = 100$ (total length of ferre)

The area is

$$A = \chi y = \chi(100 - 22)$$

$$= 100\chi - 2\chi^{2}$$

The critical point is when
$$A = 100 - 4\chi = 0$$

$$50 \chi = \frac{100}{50} = 25$$
Is we know $y = 100 - 21\chi$ = $100 - 50 = 50$

et $gN = xe^{-x}$. Find the derivative of g and its critical points.

2. Let $g(\mathbf{x}) = xe^{-x}$. Find the derivative of g and its critical points.

$$g'(t) = \underbrace{e^{\gamma}(1-\gamma)}_{\text{The critical point(s) are}} \underbrace{\chi = 1}_{\text{The critical point($$